scholarly journals Myoelectric Signal Classification of Targeted Muscles Using Dictionary Learning

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2370 ◽  
Author(s):  
Hyun-Joon Yoo ◽  
Hyeong-jun Park ◽  
Boreom Lee

Surface electromyography (sEMG) signals comprise electrophysiological information related to muscle activity. As this signal is easy to record, it is utilized to control several myoelectric prostheses devices. Several studies have been conducted to process sEMG signals more efficiently. However, research on optimal algorithms and electrode placements for the processing of sEMG signals is still inconclusive. In addition, very few studies have focused on minimizing the number of electrodes. In this study, we investigated the most effective method for myoelectric signal classification with a small number of electrodes. A total of 23 subjects participated in the study, and the sEMG data of 14 different hand movements of the subjects were acquired from targeted muscles and untargeted muscles. Furthermore, the study compared the classification accuracy of the sEMG data using discriminative feature-oriented dictionary learning (DFDL) and other conventional classifiers. DFDL demonstrated the highest classification accuracy among the classifiers, and its higher quality performance became more apparent as the number of channels decreased. The targeted method was superior to the untargeted method, particularly when classifying sEMG signals with DFDL. Therefore, it was concluded that the combination of the targeted method and the DFDL algorithm could classify myoelectric signals more effectively with a minimal number of channels.

2010 ◽  
Vol 61 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Ganesh Naik ◽  
Dinesh Kumar

Hybrid Feature Selection for Myoelectric Signal Classification Using MICA This paper presents a novel method to enhance the performance of Independent Component Analysis (ICA) of myoelectric signal by decomposing the signal into components originating from different muscles. First, we use Multi run ICA (MICA) algorithm to separate the muscle activities. Pattern classification of the separated signal is performed in the second step with a back propagation neural network. The focus of this work is to establish a simple, yet robust system that can be used to identify subtle complex hand actions and gestures for control of prosthesis and other computer assisted devices. Testing was conducted using several single shot experiments conducted with five subjects. The results indicate that the system is able to classify four different wrist actions with near 100% accuracy.


2018 ◽  
Vol 63 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Karan Veer ◽  
Renu Vig

Abstract:This paper describes the utility of principal component analysis (PCA) in classifying upper limb signals. PCA is a powerful tool for analyzing data of high dimension. Here, two different input strategies were explored. The first method uses upper arm dual-position-based myoelectric signal acquisition and the other solely uses PCA for classifying surface electromyogram (SEMG) signals. SEMG data from the biceps and the triceps brachii muscles and four independent muscle activities of the upper arm were measured in seven subjects (total dataset=56). The datasets used for the analysis are rotated by class-specific principal component matrices to decorrelate the measured data prior to feature extraction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yanyan Zhang ◽  
Gang Wang ◽  
Chaolin Teng ◽  
Zhongjiang Sun ◽  
Jue Wang

For the purpose of successfully developing a prosthetic control system, many attempts have been made to improve the classification accuracy of surface electromyographic (SEMG) signals. Nevertheless, the effective feature extraction is still a paramount challenge for the classification of SEMG signals. The relative frequency band energy (RFBE) method based on wavelet packet decomposition was proposed for the prosthetic pattern recognition of multichannel SEMG signals. Firstly, the wavelet packet energy of SEMG signals in each subspace was calculated by using wavelet packet decomposition and the RFBE of each frequency band was obtained by the wavelet packet energy. Then, the principal component analysis (PCA) and the Davies-Bouldin (DB) index were used to perform the feature selection. Lastly, the support vector machine (SVM) was applied for the classification of SEMG signals. Our results demonstrated that the RFBE approach was suitable for identifying different types of forearm movements. By comparing with other classification methods, the proposed method achieved higher classification accuracy in terms of the classification of SEMG signals.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 233
Author(s):  
Dong-Woon Lee ◽  
Sung-Yong Kim ◽  
Seong-Nyum Jeong ◽  
Jae-Hong Lee

Fracture of a dental implant (DI) is a rare mechanical complication that is a critical cause of DI failure and explantation. The purpose of this study was to evaluate the reliability and validity of a three different deep convolutional neural network (DCNN) architectures (VGGNet-19, GoogLeNet Inception-v3, and automated DCNN) for the detection and classification of fractured DI using panoramic and periapical radiographic images. A total of 21,398 DIs were reviewed at two dental hospitals, and 251 intact and 194 fractured DI radiographic images were identified and included as the dataset in this study. All three DCNN architectures achieved a fractured DI detection and classification accuracy of over 0.80 AUC. In particular, automated DCNN architecture using periapical images showed the highest and most reliable detection (AUC = 0.984, 95% CI = 0.900–1.000) and classification (AUC = 0.869, 95% CI = 0.778–0.929) accuracy performance compared to fine-tuned and pre-trained VGGNet-19 and GoogLeNet Inception-v3 architectures. The three DCNN architectures showed acceptable accuracy in the detection and classification of fractured DIs, with the best accuracy performance achieved by the automated DCNN architecture using only periapical images.


Information ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 249
Author(s):  
Xin Jin ◽  
Yuanwen Zou ◽  
Zhongbing Huang

The cell cycle is an important process in cellular life. In recent years, some image processing methods have been developed to determine the cell cycle stages of individual cells. However, in most of these methods, cells have to be segmented, and their features need to be extracted. During feature extraction, some important information may be lost, resulting in lower classification accuracy. Thus, we used a deep learning method to retain all cell features. In order to solve the problems surrounding insufficient numbers of original images and the imbalanced distribution of original images, we used the Wasserstein generative adversarial network-gradient penalty (WGAN-GP) for data augmentation. At the same time, a residual network (ResNet) was used for image classification. ResNet is one of the most used deep learning classification networks. The classification accuracy of cell cycle images was achieved more effectively with our method, reaching 83.88%. Compared with an accuracy of 79.40% in previous experiments, our accuracy increased by 4.48%. Another dataset was used to verify the effect of our model and, compared with the accuracy from previous results, our accuracy increased by 12.52%. The results showed that our new cell cycle image classification system based on WGAN-GP and ResNet is useful for the classification of imbalanced images. Moreover, our method could potentially solve the low classification accuracy in biomedical images caused by insufficient numbers of original images and the imbalanced distribution of original images.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 137
Author(s):  
Larisa Dunai ◽  
Martin Novak ◽  
Carmen García Espert

The present paper describes the development of a prosthetic hand based on human hand anatomy. The hand phalanges are printed with 3D printing with Polylactic Acid material. One of the main contributions is the investigation on the prosthetic hand joins; the proposed design enables one to create personalized joins that provide the prosthetic hand a high level of movement by increasing the degrees of freedom of the fingers. Moreover, the driven wire tendons show a progressive grasping movement, being the friction of the tendons with the phalanges very low. Another important point is the use of force sensitive resistors (FSR) for simulating the hand touch pressure. These are used for the grasping stop simulating touch pressure of the fingers. Surface Electromyogram (EMG) sensors allow the user to control the prosthetic hand-grasping start. Their use may provide the prosthetic hand the possibility of the classification of the hand movements. The practical results included in the paper prove the importance of the soft joins for the object manipulation and to get adapted to the object surface. Finally, the force sensitive sensors allow the prosthesis to actuate more naturally by adding conditions and classifications to the Electromyogram sensor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamideh Soltani ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Keivan Maghooli

AbstractBrain computer interface (BCI) systems have been regarded as a new way of communication for humans. In this research, common methods such as wavelet transform are applied in order to extract features. However, genetic algorithm (GA), as an evolutionary method, is used to select features. Finally, classification was done using the two approaches support vector machine (SVM) and Bayesian method. Five features were selected and the accuracy of Bayesian classification was measured to be 80% with dimension reduction. Ultimately, the classification accuracy reached 90.4% using SVM classifier. The results of the study indicate a better feature selection and the effective dimension reduction of these features, as well as a higher percentage of classification accuracy in comparison with other studies.


2021 ◽  
Vol 438 ◽  
pp. 55-62
Author(s):  
Huibing Wang ◽  
Jinjia Peng ◽  
Guangqi Jiang ◽  
Fengqiang Xu ◽  
Xianping Fu

Sign in / Sign up

Export Citation Format

Share Document