scholarly journals A Hardware-Deployable Neuromorphic Solution for Encoding and Classification of Electronic Nose Data

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4831 ◽  
Author(s):  
Anup Vanarse ◽  
Adam Osseiran ◽  
Alexander Rassau ◽  
Peter van der Made

In several application domains, electronic nose systems employing conventional data processing approaches incur substantial power and computational costs and limitations, such as significant latency and poor accuracy for classification. Recent developments in spike-based bio-inspired approaches have delivered solutions for the highly accurate classification of multivariate sensor data with minimized computational and power requirements. Although these methods have addressed issues related to efficient data processing and classification accuracy, other areas, such as reducing the processing latency to support real-time application and deploying spike-based solutions on supported hardware, have yet to be studied in detail. Through this investigation, we proposed a spiking neural network (SNN)-based classifier, implemented in a chip-emulation-based development environment, that can be seamlessly deployed on a neuromorphic system-on-a-chip (NSoC). Under three different scenarios of increasing complexity, the SNN was determined to be able to classify real-valued sensor data with greater than 90% accuracy and with a maximum latency of 3 s on the software-based platform. Highlights of this work included the design and implementation of a novel encoder for artificial olfactory systems, implementation of unsupervised spike-timing-dependent plasticity (STDP) for learning, and a foundational study on early classification capability using the SNN-based classifier.

The main objective of this work is to design electronic nose system (E-Nose) which detects the odour and freshness of different fruits such as mango, pineapple, orange which are mainly used in food manufacturing industries. E-Nose system consists of sensor array of two with each sensor respond to different types of odours. These sensor data is analyzed with the K-nearest neighbour algorithm (K-NN Algorithm) using MATLAB for identification of different fruits. Freshness of fruit juice is determined by the measurement of pH value of juice by using pH electrode


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 916 ◽  
Author(s):  
Wen Cao ◽  
Chunmei Liu ◽  
Pengfei Jia

Aroma plays a significant role in the quality of citrus fruits and processed products. The detection and analysis of citrus volatiles can be measured by an electronic nose (E-nose); in this paper, an E-nose is employed to classify the juice which is stored for different days. Feature extraction and classification are two important requirements for an E-nose. During the training process, a classifier can optimize its own parameters to achieve a better classification accuracy but cannot decide its input data which is treated by feature extraction methods, so the classification result is not always ideal. Label consistent KSVD (L-KSVD) is a novel technique which can extract the feature and classify the data at the same time, and such an operation can improve the classification accuracy. We propose an enhanced L-KSVD called E-LCKSVD for E-nose in this paper. During E-LCKSVD, we introduce a kernel function to the traditional L-KSVD and present a new initialization technique of its dictionary; finally, the weighted coefficients of different parts of its object function is studied, and enhanced quantum-behaved particle swarm optimization (EQPSO) is employed to optimize these coefficients. During the experimental section, we firstly find the classification accuracy of KSVD, and L-KSVD is improved with the help of the kernel function; this can prove that their ability of dealing nonlinear data is improved. Then, we compare the results of different dictionary initialization techniques and prove our proposed method is better. Finally, we find the optimal value of the weighted coefficients of the object function of E-LCKSVD that can make E-nose reach a better performance.


2021 ◽  
Vol 185 ◽  
pp. 282-291
Author(s):  
Nizam U. Ahamed ◽  
Kellen T. Krajewski ◽  
Camille C. Johnson ◽  
Adam J. Sterczala ◽  
Julie P. Greeves ◽  
...  

2021 ◽  
Vol 237 ◽  
pp. 110810
Author(s):  
Chenli Wang ◽  
Jun Jiang ◽  
Thomas Roth ◽  
Cuong Nguyen ◽  
Yuhong Liu ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 634
Author(s):  
Tarek Frahi ◽  
Francisco Chinesta ◽  
Antonio Falcó ◽  
Alberto Badias ◽  
Elias Cueto ◽  
...  

We are interested in evaluating the state of drivers to determine whether they are attentive to the road or not by using motion sensor data collected from car driving experiments. That is, our goal is to design a predictive model that can estimate the state of drivers given the data collected from motion sensors. For that purpose, we leverage recent developments in topological data analysis (TDA) to analyze and transform the data coming from sensor time series and build a machine learning model based on the topological features extracted with the TDA. We provide some experiments showing that our model proves to be accurate in the identification of the state of the user, predicting whether they are relaxed or tense.


Sign in / Sign up

Export Citation Format

Share Document