scholarly journals Low Energy Pulsed Laser Excitation in UV Enhances the Gas Sensing Capacity of Photoluminescent ZnO Nanohybrids

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5490 ◽  
Author(s):  
Argyro Klini ◽  
Maria Androulidaki ◽  
Demetrios Anglos

Nanohybrids, composed of luminescent zinc oxide (ZnO) nanoparticles dispersed in an inert polydimethylsiloxane (PDMS) matrix, exhibit an excellent ability to follow changes in the type and composition of their surrounding atmosphere. These changes are found to affect the UV photoluminescence (PL) emission of the ZnO-PDMS hybrids measured at room temperature. The influence of irradiation parameters, such as excitation intensity and wavelength, on the response of the ZnO-PDMS sensor against ethanol and oxygen, have been systematically investigated in a comparative study performed employing pulsed excitation at 248 and 355 nm. This study represents the first demonstration that the sensing performance of the PL-based ZnO sensors can be optimized by tuning the excitation parameters and it particularly illustrates that maintaining a low pump energy density is crucial for enhancing the sensitivity of the sensor achieving response values approaching 100%.

RSC Advances ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 5618-5628
Author(s):  
Wenkai Jiang ◽  
Xinwei Chen ◽  
Tao Wang ◽  
Bolong Li ◽  
Min Zeng ◽  
...  

A high performance gas sensor based on a metal phthalocyanine/graphene quantum dot hybrid material was fabricated for NO2 detection at room-temperature.


Nanoscale ◽  
2015 ◽  
Vol 7 (35) ◽  
pp. 14643-14651 ◽  
Author(s):  
Shuang Xu ◽  
Jun Gao ◽  
Linlin Wang ◽  
Kan Kan ◽  
Yu Xie ◽  
...  

2015 ◽  
Vol 637 ◽  
pp. 55-61 ◽  
Author(s):  
Xiaohui Mu ◽  
Changlong Chen ◽  
Liuyuan Han ◽  
Baiqi Shao ◽  
Yuling Wei ◽  
...  

2021 ◽  
pp. 2150392
Author(s):  
B. D. Urmanov ◽  
M. S. Leanenia ◽  
G. P. Yablonskii ◽  
O. B. Taghiyev ◽  
K. O. Taghiyev ◽  
...  

Photoluminescence properties of [Formula: see text] chalcogenide semiconductors have been studied under the impulse laser excitation in the range of 10–105 W/cm2 at room temperature. This study has shown that as a result of excitation, photoluminescence of [Formula: see text] is characterized by the emission in the interval of 450–575 nm with significant domination in the spectra line at 660 nm. Photoluminescence of [Formula: see text] quenches at wavelengths of 560 nm and 660 nm with constant time frames 258 ns and 326 ns, respectively. Moreover, the temperature measurements of photoluminescence were performed on the samples in the temperature range of 10–300 K.


2018 ◽  
Vol 260 ◽  
pp. 927-936 ◽  
Author(s):  
Yunshi Liu ◽  
Xing Gao ◽  
Feng Li ◽  
Geyu Lu ◽  
Tong Zhang ◽  
...  

2020 ◽  
Vol 8 (38) ◽  
pp. 13108-13126
Author(s):  
Hanie Hashtroudi ◽  
Ian D. R. Mackinnon ◽  
Mahnaz Shafiei

Gas sensing performance of conductometric devices based on 2D hybrid nanomaterials operating at room temperature.


Sign in / Sign up

Export Citation Format

Share Document