scholarly journals Altering the Course of Technologies to Monitor Loosening States of Endoprosthetic Implants

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 104 ◽  
Author(s):  
João Henrique Cachão ◽  
Marco P. Soares dos Santos ◽  
Rodrigo Bernardo ◽  
António Ramos ◽  
Rainer Bader ◽  
...  

Musculoskeletal disorders are becoming an ever-growing societal burden and, as a result, millions of bone replacements surgeries are performed per year worldwide. Despite total joint replacements being recognized among the most successful surgeries of the last century, implant failure rates exceeding 10% are still reported. These numbers highlight the necessity of technologies to provide an accurate monitoring of the bone–implant interface state. This study provides a detailed review of the most relevant methodologies and technologies already proposed to monitor the loosening states of endoprosthetic implants, as well as their performance and experimental validation. A total of forty-two papers describing both intracorporeal and extracorporeal technologies for cemented or cementless fixation were thoroughly analyzed. Thirty-eight technologies were identified, which are categorized into five methodologies: vibrometric, acoustic, bioelectric impedance, magnetic induction, and strain. Research efforts were mainly focused on vibrometric and acoustic technologies. Differently, approaches based on bioelectric impedance, magnetic induction and strain have been less explored. Although most technologies are noninvasive and are able to monitor different loosening stages of endoprosthetic implants, they are not able to provide effective monitoring during daily living of patients.

2019 ◽  
Vol 8 (12) ◽  
pp. 2091 ◽  
Author(s):  
Stuart B. Goodman ◽  
Jiri Gallo

Clinical studies, as well as in vitro and in vivo experiments have demonstrated that byproducts from joint replacements induce an inflammatory reaction that can result in periprosthetic osteolysis (PPOL) and aseptic loosening (AL). Particle-stimulated macrophages and other cells release cytokines, chemokines, and other pro-inflammatory substances that perpetuate chronic inflammation, induce osteoclastic bone resorption and suppress bone formation. Differentiation, maturation, activation, and survival of osteoclasts at the bone–implant interface are under the control of the receptor activator of nuclear factor kappa-Β ligand (RANKL)-dependent pathways, and the transcription factors like nuclear factor κB (NF-κB) and activator protein-1 (AP-1). Mechanical factors such as prosthetic micromotion and oscillations in fluid pressures also contribute to PPOL. The treatment for progressive PPOL is only surgical. In order to mitigate ongoing loss of host bone, a number of non-operative approaches have been proposed. However, except for the use of bisphosphonates in selected cases, none are evidence based. To date, the most successful and effective approach to preventing PPOL is usage of wear-resistant bearing couples in combination with advanced implant designs, reducing the load of metallic and polymer particles. These innovations have significantly decreased the revision rate due to AL and PPOL in the last decade.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Wiebe Chr. Verra ◽  
Anton J. M. de Craen ◽  
Coen C. M. M. Jaspars ◽  
Jacobijn Gussekloo ◽  
Gerard Jan Blauw ◽  
...  

Total hip or knee replacement is effective in improving joint function, quality of life, and pain reduction. The oldest old population with joint replacements (TJR) is underrepresented in current literature. We compared health-related and functional characteristics of oldest olds with and without TJR. Participants (aged 85 years) were divided into a group with and without TJR. Comorbidity, physical and joint functioning, daily living activities, quality of life, and mortality were recorded. Thirty-eight of 599 participants (6.3%) received a TJR in the past. Participants with a TJR had slightly less comorbidities, walked slower (P=0.006), and complained more about hip-pain (P=0.007). Mortality of those with a TJR was lower during the first 8-year followup (P=0.04). All other characteristics were comparable between groups. We conclude that subjects with a TJR performed equally well, besides showing a lower gait speed and a higher frequency of hip-pain. Except for the lower gaitspeed, having a TJR is not associated with poorer health.


Author(s):  
Teja Vanteddu ◽  
Bijo Sebastian ◽  
Pinhas Ben-Tzvi

This paper describes the design optimization of the RML Glove in order to improve its grasp performance. The existing design is limited to grasping objects of large diameter (> 110mm) due to its inability in attaining high bending angles. For an exoskeleton glove to be effective in its use as an assistive and rehabilitation device for Activities of Daily Living (ADL), it should be able to interact with objects over a wide range of sizes. Motivated by these limitations, the kinematics of the existing linkage mechanism was analyzed in detail and the design variables were identified. Two different cost functions were formulated and compared in their ability to yield optimal values for the design variables. The optimal set of design variables was chosen based on the grasp angles achieved and the resulting mechanism was simulated in CAD for feasibility testing. An exoskeleton mechanism corresponding to the index finger was manufactured with the chosen design variables and detailed experimental validation was performed to illustrate the improvement in grasp performance over the existing design. The paper ends with a summary of the experimental results and directions for future research.


2000 ◽  
Author(s):  
A. A. Edidin ◽  
S. M. Kurtz

Abstract Around 500,000 total hip and knee arthroplasties are performed each year in the United States, with a comparable number performed annually throughout the rest of the world. Since its development in the 1960s, contemporary total joint arthroplasty has proven to be extremely successful in alleviating pain and restoring joint function. However, for a minority of patients, mechanical and biological sequelae emanating from the breakdown of the ultra-high molecular weight polyethylene (UHMPWE) bearings limit the longevity of the procedures.


Sign in / Sign up

Export Citation Format

Share Document