scholarly journals Voltammetry at Hexamethyl-P-Terphenyl Poly(Benzimidazolium) (HMT-PMBI)-Coated Glassy Carbon Electrodes: Charge Transport Properties and Detection of Uric and Ascorbic Acid

Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 443
Author(s):  
Rees ◽  
Wright ◽  
Holdcroft ◽  
Bertoncello

We describe the voltammetric behavior of an anion-exchange membrane, hexamethyl-p-terphenyl poly(benzimidazolium) (HMT-PMBI). The anion-exchange properties of HMT-PMBI chemically modified electrodes were investigated using K4Fe(CN)6 and K2IrCl6 as redox probes. The permselectivity properties of HMT-PMBI chemically modified electrodes were ascertained using tris(2-2’)bipyridyl-ruthenium(II) chloride Ru(bpy)32+. Cyclic voltammetry and chronoamperometry were utilized to extract parameters such as the concentration of the redox mediators inside the films and the apparent diffusion coefficients. We found the concentration of K4Fe(CN)6 and K2IrCl6 redox species within HMT-PMBI-coated films to be on the order of 0.04–0.1 mol·dm−3, and values of Dapp ca. 10−10–10−9 cm2·s−1. To evaluate the possibility of using such a polymer coating in electroanalysis, HMT-PMBI-modified electrodes were utilized for the voltammetric detection of uric acid in artificial urine, Surine® and ascorbic acid in Vitamin C samples. The results showed that HMT-PMBI-coated electrodes can detect uric acid in Surine® with a limit of detection (LoD) of 7.7 µM, sensitivity of 0.14 µA·µM−1·cm−2, and linear range between 5 μM and 200 μM, whereas for Vitamin C tablets, the LoD is 41.4 µM, the sensitivity is 0.08 µA·µM−1·cm−2, and the linear range is between 25 μM and 450 μM.

2016 ◽  
Vol 76 ◽  
pp. 15-29 ◽  
Author(s):  
Muhammad Sajid ◽  
Mazen Khaled Nazal ◽  
Muhammad Mansha ◽  
Abdulnaser Alsharaa ◽  
Shehzada Muhammad Sajid Jillani ◽  
...  

2018 ◽  
Vol 6 (48) ◽  
pp. 13293-13304 ◽  
Author(s):  
Sandra Hernandez-Aldave ◽  
Robert B. Kaspar ◽  
Michael P. Letterio ◽  
Afshin Tarat ◽  
Yushan Yan ◽  
...  

Ionomer (TPQPCl)/graphite nanoplatelet-coated electrodes are developed as a new sensing platform for amperometric detection of ascorbic acid.


2020 ◽  
Vol 16 (6) ◽  
pp. 641-660
Author(s):  
Sariye I. Kaya ◽  
Tutku C. Karabulut ◽  
Sevinç Kurbanoglu ◽  
Sibel A. Ozkan

Electrode modification is a technique performed with different chemical and physical methods using various materials, such as polymers, nanomaterials and biological agents in order to enhance sensitivity, selectivity, stability and response of sensors. Modification provides the detection of small amounts of analyte in a complex media with very low limit of detection values. Electrochemical methods are well suited for drug analysis, and they are all-purpose techniques widely used in environmental studies, industrial fields, and pharmaceutical and biomedical analyses. In this review, chemically modified electrodes are discussed in terms of modification techniques and agents, and recent studies related to chemically modified electrodes in electrochemical drug analysis are summarized.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Umesh Chandra ◽  
B. E. Kumara Swamy ◽  
Ongera Gilbert ◽  
B. S. Sherigara

Poly (xylenol orange) film-coated graphite pencil electrode was fabricated for the detection of dopamine in the presence of ascorbic acid and uric acid in phosphate buffer solution of pH 7. The redox peaks obtained at modified electrode shows a good enhancement. The scan rate effect was found to be a diffusion-controlled electrode process. The electrochemical oxidation of dopamine was depended on pH, and the limit of detection was found to be 9.1×10−8 M. The simultaneous study gave and excellent result with great potential difference between dopamine and other bioactive organic molecules by using both cyclic voltammetric and differential pulse voltammetric techniques. The present modified graphite electrode was applied to the detection of dopamine in the injection samples, and the recovery obtained was satisfactory.


2018 ◽  
Vol 68 (12) ◽  
pp. 2799-2803
Author(s):  
Maria Daniela Pop ◽  
Oana Brincoveanu ◽  
Mihaela Cristea ◽  
George Octavian Buica ◽  
Marius Enachescu ◽  
...  

Preparation and microscopy characterization of polymer modified glassy carbon electrodes based on (5-[(azulen-1-yl) methylene]-2-thioxothiazolidin-4-one (L) were reported. Atomic Force Microscopy was used to investigate the morphological and mechanical properties of the deposited polyL films onto glassy carbon. The topography images of the analyzed samples exhibited the presence of some columnar shape features onto the layer surfaces. The surface roughness of the layers deposited at constant charge calculated from topography images, increased with the more positive applied potential for controlled potential electrolysis. At different charges, the roughness parameter showed the same behavior for the layers obtained applying a constant potential without having a noticeable influence on the adhesion properties on the substrate. Analysis using scanning electron microscopy shows a relatively uniform surface arrangement of the polymer and the presence of some clusters which are disturbing the planarity. PolyL chemically modified electrodes have been used for heavy metal ions detection with best results for lead.


Sign in / Sign up

Export Citation Format

Share Document