scholarly journals 3D Measurement of Human Chest and Abdomen Surface Based on 3D Fourier Transform and Time Phase Unwrapping

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1091 ◽  
Author(s):  
Haibin Wu ◽  
Shuang Yu ◽  
Xiaoyang Yu

Monitoring respiratory movements is an effective way to improve radiotherapy treatments of thoracic and abdominal tumors, but the current approach is limited to measuring specific points in the chest and abdomen. In this paper, a dynamic three-dimensional (3D) measurement approach of the human chest and abdomen surface is proposed, which can infer tumor movement more accurately, so the radiotherapy damage to the human body can be reduced. Firstly, color stripe patterns in the RGB color model are projected, then after color correction, the collected stripe image sequences are separated into the three RGB primary color stripe image sequences. Secondly, a fringe projection approach is used to extract the folded phase combined 3D Fourier transform with 3D Gaussian filtering. By the relationship between adjacent fringe images in the time sequence, Gaussian filter parameters with individual characteristics are designed and optimized to improve the accuracy of wrapped phase extraction. In addition, based on the difference between the fractional parts of the folded phase error, one remainder equation can be determined, which is used for time-phase unwrapping. The simulation model and human experiments show that the proposed approach can obtain the 3D image sequences of the chest and abdomen surface in respiratory motion effectively and accurately with strong anti-interference ability.

2021 ◽  
Author(s):  
Alkan çağlı ◽  
M. Yılmaz

Abstract In this study, the use of three-dimensional modeling method was tested in taking some body measurements in camels with a practical method and was compared with other measurement methods. As the animal material of the study, 12 single humped dromedary female camels and 14 double humped Camelus dromedarius X Camelus bactrianus: F1 male camels, totally 26 camels, were used in three camel farms in Incirliova district of Aydın province. The body measurements taken from each animal by using different three methods, namely by Manuel Method (MM), by Photography Method (PM), and by Three Dimensional Modeling Method (3D) were the Cidago Height (CH), the Back Height (BH), the Rump Height (RH), the Body Length (BL), the Brisket Height (BRH), the Abdominal Height (AH), the Shoulder Width (SW) and the Rump Width (RW) and these values were compared with each other. As a result of this study, the mean values of MM and 3D measurement values were very close to each other and the difference between them was found to be statistically insignificant. (P<0.05). The difference between the means of PM and MM/3D measurement values was found to be significant. (P <0.05). In the measurements taken by MM, 3D, PM methods in male camels, the values obtained by MM and 3D methods for CH, BH, RH, BRH, AH, BL, and SW were very close to each other and the differences between them were found insignificant statistically (p < 0.05). On the determined regression graph, a linear was found between MM and 3D measurement values. As a result of this study, it has been determined that the 3D modeling method can be used as a remote and more practical method in determining the morphological features of large-scale animals such as camels more reliably, more easily and more practically.


2018 ◽  
Vol 08 (02) ◽  
pp. 1830001 ◽  
Author(s):  
T. R. Volk ◽  
L. S. Kokhanchik ◽  
R. V. Gainutdinov ◽  
Y. V. Bodnarchuk ◽  
S. D. Lavrov

In this review, our recent results on the electron-beam domain writing (EBDW) on the nonpolar surfaces of LiNbO3 crystals of different compositions are presented. Under EB irradiation of the nonpolar surfaces, domains nucleated in irradiation points grow frontally along the polar [Formula: see text]-direction in a thin (of microns in thickness) surface layer; the driving force is the tangential component of space-charge fields induced by EB in irradiation points. This geometry of the experiment provides a possibility of three-dimensional (3D) characterization of domain patterns using the combination of atomic force microscopy (AFM) and second harmonic generation (SHG) confocal microscopy methods. The obtained results permitted us to relate the main characteristics of domain formation (the domain sizes and velocity [Formula: see text] of the frontal motion) to the irradiation conditions (the accelerating voltage [Formula: see text] of scanning electron microscopy (SEM), EB current [Formula: see text], the inserted charge [Formula: see text]). The domain depth [Formula: see text] is controlled by [Formula: see text] via the electron penetration depth; the domain length [Formula: see text] increases linearly with [Formula: see text] owing to the domain frontal growth by the viscous friction law. The electron emission coefficient [Formula: see text] affects the domain formation due to the fundamental dependence of [Formula: see text] on [Formula: see text]. In the framework of current approach to EB charging of insulators, the effect of an enhanced conductance on EBDW characteristics is analyzed. The difference between EBDW characteristics observed in varied LiNbO3 compositions is discussed in the framework of the intrinsic defect structure of LiNbO3. The obtained results extend the possibility of EBDW application to a wider range of crystals.


2014 ◽  
Vol 701-702 ◽  
pp. 471-474
Author(s):  
Li Mei Song ◽  
Guang Xin Xing ◽  
Peng Qiang Wang ◽  
Jiang Tao Xi ◽  
Qing Hua Guo

This paper proposes a method of global phase unwrapping used in multi-frequency three-dimensional (3D) measurements. In this method, three kinds of optical information which change in accordance with trigonometric function (sine or cosine) to the objects. The optical information cycles is P1, P2 and P3. Each waveform should 4-8 steps phase shifts. Then, calculate the phase value of each cycle. The composited phase value of two cycles and the final composited phase value of three cycles are calculated by image shift of each cycle. Finally, calculate the global phase value of each cycle based on the composited phase, thus, all the 3D coordinates of objects can be obtain after 3D reconstruction. The proposed method can solves the object surfaces color changing largely in 3D measurements. This method realizes high precision measurement without spray developer and achieves the protection of the environment.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3652
Author(s):  
Cory Juntunen ◽  
Isabel M. Woller ◽  
Yongjin Sung

Hyperspectral three-dimensional (3D) imaging can provide both 3D structural and functional information of a specimen. The imaging throughput is typically very low due to the requirement of scanning mechanisms for different depths and wavelengths. Here we demonstrate hyperspectral 3D imaging using Snapshot projection optical tomography (SPOT) and Fourier-transform spectroscopy (FTS). SPOT allows us to instantaneously acquire the projection images corresponding to different viewing angles, while FTS allows us to perform hyperspectral imaging at high spectral resolution. Using fluorescent beads and sunflower pollens, we demonstrate the imaging performance of the developed system.


1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


Author(s):  
Sunil K. Deokar ◽  
Nachiket A. Gokhale ◽  
Sachin A. Mandavgane

Abstract Biomass ashes like rice husk ash (RHA), bagasse fly ash (BFA), were used for aqueous phase removal of a pesticide, diuron. Response surface methodology (RSM) and artificial neural network (ANN) were successfully applied to estimate and optimize the conditions for the maximum diuron adsorption using biomass ashes. The effect of operational parameters such as initial concentration (10–30 mg/L); contact time (0.93–16.07 h) and adsorbent dosage (20–308 mg) on adsorption were studied using central composite design (CCD) matrix. Same design was also employed to gain a training set for ANN. The maximum diuron removal of 88.95 and 99.78% was obtained at initial concentration of 15 mg/L, time of 12 h, RHA dosage of 250 mg and at initial concentration of 14 mg/L, time of 13 h, BFA dosage of 60 mg respectively. Estimation of coefficient of determination (R 2) and mean errors obtained for ANN and RSM (R 2 RHA = 0.976, R 2 BFA = 0.943) proved ANN (R 2 RHA = 0.997, R 2 BFA = 0.982) fits better. By employing RSM coupled with ANN model, the qualitative and quantitative activity relationship of experimental data was visualized in three dimensional spaces. The current approach will be instrumental in providing quick preliminary estimations in process and product development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Eskandari ◽  
Juan Luis Albadalejo-Lijarcio ◽  
Oskar Zetterstrom ◽  
Tomáš Tyc ◽  
Oscar Quevedo-Teruel

AbstractConformal transformation optics is employed to enhance an H-plane horn’s directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions. A prototype of the lens is fabricated using three-dimensional printing. The measurement results show that the realized gain of an H-plane horn antenna can be improved by 1.5–2.4 dB compared to a reference H-plane horn.


2011 ◽  
Vol 83 ◽  
pp. 280-284
Author(s):  
Ming Jiang ◽  
Shu Zhang ◽  
Xiao Yuan He

Fast-starts are brief, sudden accelerations used by fish during predator-prey encounters. In this paper, a three-dimensional (3D) test and analysis method is critical to understand the function of the pectoral fin during maneuvers. An experiment method based on Fourier Transform Profilometry for 3D pectoral fin profile variety during fish maneuvers is proposed. This method was used in a carp fast-start during prey. Projecting the moiré fringes onto a carp pectoral fin it will produce the deformed fringe patterns contain 3D information. A high speed camera captures these time-sequence images. By Fourier transform, filter, inverse Fourier transform and unwrap these phase maps in 3D phase space, the complex pectoral fin profile variety were really reconstructed. The present study provides a new method to quantify the analysis of kinetic characteristic of the pectoral fin during maneuvers.


1996 ◽  
Vol 10 (28) ◽  
pp. 1397-1406 ◽  
Author(s):  
AXEL VÖLKER ◽  
PETER KOPIETZ

We use the Lanczos method to calculate the variance σ2(E, ϕ) of the number of energy levels in an energy window of width E below the Fermi energy for noninteracting disordered electrons on a thin three-dimensional ring threaded by an Aharonov–Bohm flux ϕ. We confirm numerically that for small E the flux-dependent part of σ2(E, ϕ) is well described by the Altshuler–Shklovskii-diagram involving two Cooperons. However, in the absence of electron–electron interactions this result cannot be extrapolated to energies E where the energy-dependence of the average density of states becomes significant. We discuss consequences for persistent currents and argue that for the calculation of the difference between the canonical- and grand canonical current it is crucial to take the electron–electron interaction into account.


Sign in / Sign up

Export Citation Format

Share Document