scholarly journals Domain formation on the nonpolar lithium niobate surfaces under electron-beam irradiation: A review

2018 ◽  
Vol 08 (02) ◽  
pp. 1830001 ◽  
Author(s):  
T. R. Volk ◽  
L. S. Kokhanchik ◽  
R. V. Gainutdinov ◽  
Y. V. Bodnarchuk ◽  
S. D. Lavrov

In this review, our recent results on the electron-beam domain writing (EBDW) on the nonpolar surfaces of LiNbO3 crystals of different compositions are presented. Under EB irradiation of the nonpolar surfaces, domains nucleated in irradiation points grow frontally along the polar [Formula: see text]-direction in a thin (of microns in thickness) surface layer; the driving force is the tangential component of space-charge fields induced by EB in irradiation points. This geometry of the experiment provides a possibility of three-dimensional (3D) characterization of domain patterns using the combination of atomic force microscopy (AFM) and second harmonic generation (SHG) confocal microscopy methods. The obtained results permitted us to relate the main characteristics of domain formation (the domain sizes and velocity [Formula: see text] of the frontal motion) to the irradiation conditions (the accelerating voltage [Formula: see text] of scanning electron microscopy (SEM), EB current [Formula: see text], the inserted charge [Formula: see text]). The domain depth [Formula: see text] is controlled by [Formula: see text] via the electron penetration depth; the domain length [Formula: see text] increases linearly with [Formula: see text] owing to the domain frontal growth by the viscous friction law. The electron emission coefficient [Formula: see text] affects the domain formation due to the fundamental dependence of [Formula: see text] on [Formula: see text]. In the framework of current approach to EB charging of insulators, the effect of an enhanced conductance on EBDW characteristics is analyzed. The difference between EBDW characteristics observed in varied LiNbO3 compositions is discussed in the framework of the intrinsic defect structure of LiNbO3. The obtained results extend the possibility of EBDW application to a wider range of crystals.

Vestnik RFFI ◽  
2019 ◽  
pp. 14-25
Author(s):  
Radmir V. Gainutdinov ◽  
Yadviga V. Bodnarchuk ◽  
Sergey D. Lavrov

In this review our recent results on the electron-beam domain writing (EBDW) on the nonpolar surfaces of LiNbO3 crystals of different compositions are presented. The obtained results permitted us to relate the main characteristics of domain formation (the domain sizes and velocity Vf of the frontal motion) to the irradiation conditions (the accelerating voltage U of scanning electron microscopy, EB-current I, the inserted charge Q). The domain depth Td is controlled by U via the electron penetration depth; the domain length Ld increases linearly with Q owing to the domain frontal growth by the viscous friction law. In optical waveguides, the matching of the Td value with the waveguide thickness D provides optimal values of the waveguide conversion to the second harmonic


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1091 ◽  
Author(s):  
Haibin Wu ◽  
Shuang Yu ◽  
Xiaoyang Yu

Monitoring respiratory movements is an effective way to improve radiotherapy treatments of thoracic and abdominal tumors, but the current approach is limited to measuring specific points in the chest and abdomen. In this paper, a dynamic three-dimensional (3D) measurement approach of the human chest and abdomen surface is proposed, which can infer tumor movement more accurately, so the radiotherapy damage to the human body can be reduced. Firstly, color stripe patterns in the RGB color model are projected, then after color correction, the collected stripe image sequences are separated into the three RGB primary color stripe image sequences. Secondly, a fringe projection approach is used to extract the folded phase combined 3D Fourier transform with 3D Gaussian filtering. By the relationship between adjacent fringe images in the time sequence, Gaussian filter parameters with individual characteristics are designed and optimized to improve the accuracy of wrapped phase extraction. In addition, based on the difference between the fractional parts of the folded phase error, one remainder equation can be determined, which is used for time-phase unwrapping. The simulation model and human experiments show that the proposed approach can obtain the 3D image sequences of the chest and abdomen surface in respiratory motion effectively and accurately with strong anti-interference ability.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
J. J. Laidler

The presence of three-dimensional voids in quenched metals has long been suspected, and voids have indeed been observed directly in a number of metals. These include aluminum, platinum, and copper, silver and gold. Attempts at the production of observable quenched-in defects in nickel have been generally unsuccessful, so the present work was initiated in order to establish the conditions under which such defects may be formed.Electron beam zone-melted polycrystalline nickel foils, 99.997% pure, were quenched from 1420°C in an evacuated chamber into a bath containing a silicone diffusion pump fluid . The pressure in the chamber at the quenching temperature was less than 10-5 Torr . With an oil quench such as this, the cooling rate is approximately 5,000°C/second above 400°C; below 400°C, the cooling curve has a long tail. Therefore, the quenched specimens are aged in place for several seconds at a temperature which continuously approaches the ambient temperature of the system.


Author(s):  
E. Völkl ◽  
L.F. Allard ◽  
B. Frost ◽  
T.A. Nolan

Off-axis electron holography has the well known ability to preserve the complex image wave within the final, recorded image. This final image described by I(x,y) = I(r) contains contributions from the image intensity of the elastically scattered electrons IeI (r) = |A(r) exp (iΦ(r)) |, the contributions from the inelastically scattered electrons IineI (r), and the complex image wave Ψ = A(r) exp(iΦ(r)) as:(1) I(r) = IeI (r) + Iinel (r) + μ A(r) cos(2π Δk r + Φ(r))where the constant μ describes the contrast of the interference fringes which are related to the spatial coherence of the electron beam, and Φk is the resulting vector of the difference of the wavefront vectors of the two overlaping beams. Using a software package like HoloWorks, the complex image wave Ψ can be extracted.


Author(s):  
Kenneth H. Downing

Three-dimensional structures of a number of samples have been determined by electron crystallography. The procedures used in this work include recording images of fairly large areas of a specimen at high tilt angles. There is then a large defocus ramp across the image, and parts of the image are far out of focus. In the regions where the defocus is large, the contrast transfer function (CTF) varies rapidly across the image, especially at high resolution. Not only is the CTF then difficult to determine with sufficient accuracy to correct properly, but the image contrast is reduced by envelope functions which tend toward a low value at high defocus.We have combined computer control of the electron microscope with spot-scan imaging in order to eliminate most of the defocus ramp and its effects in the images of tilted specimens. In recording the spot-scan image, the beam is scanned along rows that are parallel to the tilt axis, so that along each row of spots the focus is constant. Between scan rows, the objective lens current is changed to correct for the difference in specimen height from one scan to the next.


MRS Advances ◽  
2020 ◽  
Vol 5 (64) ◽  
pp. 3507-3520
Author(s):  
Chunhui Dai ◽  
Kriti Agarwal ◽  
Jeong-Hyun Cho

AbstractNanoscale self-assembly, as a technique to transform two-dimensional (2D) planar patterns into three-dimensional (3D) nanoscale architectures, has achieved tremendous success in the past decade. However, an assembly process at nanoscale is easily affected by small unavoidable variations in sample conditions and reaction environment, resulting in a low yield. Recently, in-situ monitored self-assembly based on ion and electron irradiation has stood out as a promising candidate to overcome this limitation. The usage of ion and electron beam allows stress generation and real-time observation simultaneously, which significantly enhances the controllability of self-assembly. This enables the realization of various complex 3D nanostructures with a high yield. The additional dimension of the self-assembled 3D nanostructures opens the possibility to explore novel properties that cannot be demonstrated in 2D planar patterns. Here, we present a rapid review on the recent achievements and challenges in nanoscale self-assembly using electron and ion beam techniques, followed by a discussion of the novel optical properties achieved in the self-assembled 3D nanostructures.


2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


2021 ◽  
Vol 129 (3) ◽  
pp. 030901
Author(s):  
Hossein J. Sharahi ◽  
Mohsen Janmaleki ◽  
Laurene Tetard ◽  
Seonghwan Kim ◽  
Hamed Sadeghian ◽  
...  

1983 ◽  
Vol 218 (1210) ◽  
pp. 119-126 ◽  

The number of iron atoms in the dimeric iron-containing superoxide dismutase from Pseudomonas ovalis and their atomic positions have been determined directly from anomalous scattering measurements on crystals of the native enzyme. To resolve the long-standing question of the total amount of iron per molecule for this class of dismutase, the occupancy of each site was refined against the measured Bijvoet differences. The enzyme is a symmetrical dimer with one iron site in each subunit. The iron position is 9 ņ from the intersubunit interface. The total iron content of the dimer is 1.2±0.2 moles per mole of protein. This is divided between the subunits in the ratio 0.65:0.55; the difference between them is probably not significant. Since each subunit contains, on average, slightly more than half an iron atom we conclude that the normal state of this enzyme is two iron atoms per dimer but that some of the metal is lost during purification of the protein. Although the crystals are obviously a mixture of holo- and apo-enzymes, the 2.9 Å electron density map is uniformly clean, even at the iron site. We conclude that the three-dimensional structures of the iron-bound enzyme and the apoenzyme are identical.


Sign in / Sign up

Export Citation Format

Share Document