scholarly journals A Novel Change Detection Method Based on Statistical Distribution Characteristics Using Multi-Temporal PolSAR Data

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1508 ◽  
Author(s):  
Jinqi Zhao ◽  
Yonglei Chang ◽  
Jie Yang ◽  
Yufen Niu ◽  
Zhong Lu ◽  
...  

Unsupervised change detection approaches, which are relatively straightforward and easy to implement and interpret, and which require no human intervention, are widely used in change detection. Polarimetric synthetic aperture radar (PolSAR), which has an all-weather response capability with increased polarimetric information, is a key tool for change detection. However, for PolSAR data, inadequate evaluation of the difference image (DI) map makes the threshold-based algorithms incompatible with the true distribution model, which causes the change detection results to be ineffective and inaccurate. In this paper, to solve these problems, we focus on the generation of the DI map and the selection of the optimal threshold. An omnibus test statistic is used to generate the DI map from multi-temporal PolSAR images, and an improved Kittler and Illingworth algorithm based on either Weibull or gamma distribution is used to obtain the optimal threshold for generating the change detection map. Multi-temporal PolSAR data obtained by the Radarsat-2 sensor over Wuhan in China are used to verify the efficiency of the proposed method. The experimental results using our approach obtained the best performance in East Lake and Yanxi Lake regions with false alarm rates of 1.59% and 1.80%, total errors of 2.73% and 4.33%, overall accuracy of 97.27% and 95.67%, and Kappa coefficients of 0.6486 and 0.6275, respectively. Our results demonstrated that the proposed method is more suitable than the other compared methods for multi-temporal PolSAR data, and it can obtain both effective and accurate results.

2020 ◽  
Vol 12 (11) ◽  
pp. 1746
Author(s):  
Salman Ahmadi ◽  
Saeid Homayouni

In this paper, we propose a novel approach based on the active contours model for change detection from synthetic aperture radar (SAR) images. In order to increase the accuracy of the proposed approach, a new operator was introduced to generate a difference image from the before and after change images. Then, a new model of active contours was developed for accurately detecting changed regions from the difference image. The proposed model extracts the changed areas as a target feature from the difference image based on training data from changed and unchanged regions. In this research, we used the Otsu histogram thresholding method to produce the training data automatically. In addition, the training data were updated in the process of minimizing the energy function of the model. To evaluate the accuracy of the model, we applied the proposed method to three benchmark SAR data sets. The proposed model obtains 84.65%, 87.07%, and 96.26% of the Kappa coefficient for Yellow River Estuary, Bern, and Ottawa sample data sets, respectively. These results demonstrated the effectiveness of the proposed approach compared to other methods. Another advantage of the proposed model is its high speed in comparison to the conventional methods.


Author(s):  
Xiaoqian Yuan ◽  
Chao Chen ◽  
Shan Tian ◽  
Jiandan Zhong

In order to improve the contrast of the difference image and reduce the interference of the speckle noise in the synthetic aperture radar (SAR) image, this paper proposes a SAR image change detection algorithm based on multi-scale feature extraction. In this paper, a kernel matrix with weights is used to extract features of two original images, and then the logarithmic ratio method is used to obtain the difference images of two images, and the change area of the images are extracted. Then, the different sizes of kernel matrix are used to extract the abstract features of different scales of the difference image. This operation can make the difference image have a higher contrast. Finally, the cumulative weighted average is obtained to obtain the final difference image, which can further suppress the speckle noise in the image.


2018 ◽  
Vol 10 (9) ◽  
pp. 3301 ◽  
Author(s):  
Honglyun Park ◽  
Jaewan Choi ◽  
Wanyong Park ◽  
Hyunchun Park

This study aims to reduce the false alarm rate due to relief displacement and seasonal effects of high-spatial-resolution multitemporal satellite images in change detection algorithms. Cross-sharpened images were used to increase the accuracy of unsupervised change detection results. A cross-sharpened image is defined as a combination of synthetically pan-sharpened images obtained from the pan-sharpening of multitemporal images (two panchromatic and two multispectral images) acquired before and after the change. A total of four cross-sharpened images were generated and used in combination for change detection. Sequential spectral change vector analysis (S2CVA), which comprises the magnitude and direction information of the difference image of the multitemporal images, was applied to minimize the false alarm rate using cross-sharpened images. Specifically, the direction information of S2CVA was used to minimize the false alarm rate when applying S2CVA algorithms to cross-sharpened images. We improved the change detection accuracy by integrating the magnitude and direction information obtained using S2CVA for the cross-sharpened images. In the experiment using KOMPSAT-2 satellite imagery, the false alarm rate of the change detection results decreased with the use of cross-sharpened images compared to that with the use of only the magnitude information from the original S2CVA.


Author(s):  
N. Varia ◽  
N. Davawala ◽  
S. Chirakkal ◽  
D. Haldar ◽  
R. Ghosh ◽  
...  

<p><strong>Abstract.</strong> Change detection is important to understand the patterns of transition in multi-temporal SAR acquisitions over same geographical areas. In this work, we implemented a test statistic on covariance matrices for change detection. The RADARSAT-2 data spanning the agricultural land of Central Hisar Farm in Haryana, India was used. Hypothesis testing on test-statistic was done by a pre-decided significance level. A change map was plotted and the areas with ‘change’ and ‘no change’ were determined. Analysis of changing trends of different crop lifecycles is done. This study is useful in making important agricultural crop predictions.</p>


2021 ◽  
Vol 21 (2) ◽  
pp. 45-57
Author(s):  
J. Thrisul Kumar ◽  
B. M. S. Rani ◽  
M. Satish Kumar ◽  
M. V. Raju ◽  
K. Maria Das

Abstract In this paper, the main objective is to detect changes in the geographical area of Ottawa city in Canada due to floods. Two multi-temporal Synthetic Aperture Radar (SAR) images have been taken to evaluate the un-supervised change detection process. In this process, two ratio operators named as Log-Ratio and Mean-Ratio are used to generate a difference image. Performing image fusion based on DWT by selecting optimum filter coefficients by satisfying the wavelet filter coefficient properties through a novel image fusion technique is named as ADWT. GA, PSO, AntLion Optimization algorithms (ALO) and Hybridized AntLion Algorithm (HALO) have been adapted to perform the ADWT based image fusion. Segmentation has been performed based on fuzzy c-Means clustering to detect changed and unchanged pixels. Finally, the performance of the proposed method will be analysed by comparing the segmented image with the ground truth image in terms of sensitivity, accuracy, specificity, precision, F1-score.


2021 ◽  
Vol 13 (18) ◽  
pp. 3697
Author(s):  
Liangliang Li ◽  
Hongbing Ma ◽  
Zhenhong Jia

Change detection is an important task in identifying land cover change in different periods. In synthetic aperture radar (SAR) images, the inherent speckle noise leads to false changed points, and this affects the performance of change detection. To improve the accuracy of change detection, a novel automatic SAR image change detection algorithm based on saliency detection and convolutional-wavelet neural networks is proposed. The log-ratio operator is adopted to generate the difference image, and the speckle reducing anisotropic diffusion is used to enhance the original multitemporal SAR images and the difference image. To reduce the influence of speckle noise, the salient area that probably belongs to the changed object is obtained from the difference image. The saliency analysis step can remove small noise regions by thresholding the saliency map, and interest regions can be preserved. Then an enhanced difference image is generated by combing the binarized saliency map and two input images. A hierarchical fuzzy c-means model is applied to the enhanced difference image to classify pixels into the changed, unchanged, and intermediate regions. The convolutional-wavelet neural networks are used to generate the final change map. Experimental results on five SAR data sets indicated the proposed approach provided good performance in change detection compared to state-of-the-art relative techniques, and the values of the metrics computed by the proposed method caused significant improvement.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Jiao Shi ◽  
Jiaji Wu ◽  
Anand Paul ◽  
Licheng Jiao ◽  
Maoguo Gong

This paper presents an unsupervised change detection approach for synthetic aperture radar images based on a fuzzy active contour model and a genetic algorithm. The aim is to partition the difference image which is generated from multitemporal satellite images into changed and unchanged regions. Fuzzy technique is an appropriate approach to analyze the difference image where regions are not always statistically homogeneous. Since interval type-2 fuzzy sets are well-suited for modeling various uncertainties in comparison to traditional fuzzy sets, they are combined with active contour methodology for properly modeling uncertainties in the difference image. The interval type-2 fuzzy active contour model is designed to provide preliminary analysis of the difference image by generating intermediate change detection masks. Each intermediate change detection mask has a cost value. A genetic algorithm is employed to find the final change detection mask with the minimum cost value by evolving the realization of intermediate change detection masks. Experimental results on real synthetic aperture radar images demonstrate that change detection results obtained by the improved fuzzy active contour model exhibits less error than previous approaches.


2017 ◽  
Vol 7 (12) ◽  
pp. 1297 ◽  
Author(s):  
Jinqi Zhao ◽  
Jie Yang ◽  
Zhong Lu ◽  
Pingxiang Li ◽  
Wensong Liu ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1619 ◽  
Author(s):  
Jia-Wei Chen ◽  
Rongfang Wang ◽  
Fan Ding ◽  
Bo Liu ◽  
Licheng Jiao ◽  
...  

In synthetic aperture radar (SAR) image change detection, it is quite challenging to exploit the changing information from the noisy difference image subject to the speckle. In this paper, we propose a multi-scale spatial pooling (MSSP) network to exploit the changed information from the noisy difference image. Being different from the traditional convolutional network with only mono-scale pooling kernels, in the proposed method, multi-scale pooling kernels are equipped in a convolutional network to exploit the spatial context information on changed regions from the difference image. Furthermore, to verify the generalization of the proposed method, we apply our proposed method to the cross-dataset bitemporal SAR image change detection, where the MSSP network (MSSP-Net) is trained on a dataset and then applied to an unknown testing dataset. We compare the proposed method with other state-of-arts and the comparisons are performed on four challenging datasets of bitemporal SAR images. Experimental results demonstrate that our proposed method obtain comparable results with S-PCA-Net on YR-A and YR-B dataset and outperforms other state-of-art methods, especially on the Sendai-A and Sendai-B datasets with more complex scenes. More important, MSSP-Net is more efficient than S-PCA-Net and convolutional neural networks (CNN) with less executing time in both training and testing phases.


Sign in / Sign up

Export Citation Format

Share Document