scholarly journals Multi-Person Pose Estimation using an Orientation and Occlusion Aware Deep Learning Network

Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1593 ◽  
Author(s):  
Yanlei Gu ◽  
Huiyang Zhang ◽  
Shunsuke Kamijo

Image based human behavior and activity understanding has been a hot topic in the field of computer vision and multimedia. As an important part, skeleton estimation, which is also called pose estimation, has attracted lots of interests. For pose estimation, most of the deep learning approaches mainly focus on the joint feature. However, the joint feature is not sufficient, especially when the image includes multi-person and the pose is occluded or not fully visible. This paper proposes a novel multi-task framework for the multi-person pose estimation. The proposed framework is developed based on Mask Region-based Convolutional Neural Networks (R-CNN) and extended to integrate the joint feature, body boundary, body orientation and occlusion condition together. In order to further improve the performance of the multi-person pose estimation, this paper proposes to organize the different information in serial multi-task models instead of the widely used parallel multi-task network. The proposed models are trained on the public dataset Common Objects in Context (COCO), which is further augmented by ground truths of body orientation and mutual-occlusion mask. Experiments demonstrate the performance of the proposed method for multi-person pose estimation and body orientation estimation. The proposed method can detect 84.6% of the Percentage of Correct Keypoints (PCK) and has an 83.7% Correct Detection Rate (CDR). Comparisons further illustrate the proposed model can reduce the over-detection compared with other methods.

2021 ◽  
Vol 13 (11) ◽  
pp. 2208
Author(s):  
Yi Yang ◽  
Zongxu Pan ◽  
Yuxin Hu ◽  
Chibiao Ding

Ship detection is a significant and challenging task in remote sensing. At present, due to the faster speed and higher accuracy, the deep learning method has been widely applied in the field of ship detection. In ship detection, targets usually have the characteristics of arbitrary-oriented property and large aspect ratio. In order to take full advantage of these features to improve speed and accuracy on the base of deep learning methods, this article proposes an anchor-free method, which is referred as CPS-Det, on ship detection using rotatable bounding box. The main improvements of CPS-Det as well as the contributions of this article are as follows. First, an anchor-free based deep learning network was used to improve speed with fewer parameters. Second, an annotation method of oblique rectangular frame is proposed, which solves the problem that periodic angle and bounded coordinates in conjunction with the regression calculation can lead to the problem of loss anomalies. For the annotation scheme proposed in this paper, a scheme for calculating Angle Loss is proposed, which makes the loss function of angle near the boundary value more accurate and greatly improves the accuracy of angle prediction. Third, the centerness calculation of feature points is optimized in this article so that the center weight distribution of each point is suitable for the rotation detection. Finally, a scheme combining centerness and positive sample screening is proposed and its effectiveness in ship detection is proved. Experiments on remote sensing public dataset HRSC2016 show the effectiveness of our approach.


Author(s):  
A. Kala ◽  
S. Ganesh Vaidyanathan

Rainfall forecasting is the most critical and challenging task because of its dependence on different climatic and weather parameters. Hence, robust and accurate rainfall forecasting models need to be created by applying various machine learning and deep learning approaches. Several automatic systems were created to predict the weather, but it depends on the type of weather pattern, season and location, which leads in maximizing the processing time. Therefore, in this work, significant artificial algae long short-term memory (LSTM) deep learning network is introduced to forecast the monthly rainfall. During this process, Homogeneous Indian Monthly Rainfall Data Set (1871–2016) is utilized to collect the rainfall information. The gathered information is computed with the help of an LSTM approach, which is able to process the time series data and predict the dependency between the data effectively. The most challenging phase of LSTM training process is finding optimal network parameters such as weight and bias. For obtaining the optimal parameters, one of the Meta heuristic bio-inspired algorithms called Artificial Algae Algorithm (AAA) is used. The forecasted rainfall for the testing dataset is compared with the existing models. The forecasted results exhibit superiority of our model over the state-of-the-art models for forecasting Indian Monsoon rainfall. The LSTM model combined with AAA predicts the monsoon from June–September accurately.


2020 ◽  
Author(s):  
Ilya Belevich ◽  
Eija Jokitalo

AbstractDeep learning approaches are highly sought after solutions for coping with large amounts of collected datasets and are expected to become an essential part of imaging workflows. However, in most cases, deep learning is still considered as a complex task that only image analysis experts can master. DeepMIB addresses this problem and provides the community with a user-friendly and open-source tool to train convolutional neural networks and apply them to segment 2D and 3D light and electron microscopy datasets.


2021 ◽  
Vol 11 (1) ◽  
pp. 339-348
Author(s):  
Piotr Bojarczak ◽  
Piotr Lesiak

Abstract The article uses images from Unmanned Aerial Vehicles (UAVs) for rail diagnostics. The main advantage of such a solution compared to traditional surveys performed with measuring vehicles is the elimination of decreased train traffic. The authors, in the study, limited themselves to the diagnosis of hazardous split defects in rails. An algorithm has been proposed to detect them with an efficiency rate of about 81% for defects not less than 6.9% of the rail head width. It uses the FCN-8 deep-learning network, implemented in the Tensorflow environment, to extract the rail head by image segmentation. Using this type of network for segmentation increases the resistance of the algorithm to changes in the recorded rail image brightness. This is of fundamental importance in the case of variable conditions for image recording by UAVs. The detection of these defects in the rail head is performed using an algorithm in the Python language and the OpenCV library. To locate the defect, it uses the contour of a separate rail head together with a rectangle circumscribed around it. The use of UAVs together with artificial intelligence to detect split defects is an important element of novelty presented in this work.


2021 ◽  
Vol 11 (13) ◽  
pp. 5880
Author(s):  
Paloma Tirado-Martin ◽  
Raul Sanchez-Reillo

Nowadays, Deep Learning tools have been widely applied in biometrics. Electrocardiogram (ECG) biometrics is not the exception. However, the algorithm performances rely heavily on a representative dataset for training. ECGs suffer constant temporal variations, and it is even more relevant to collect databases that can represent these conditions. Nonetheless, the restriction in database publications obstructs further research on this topic. This work was developed with the help of a database that represents potential scenarios in biometric recognition as data was acquired in different days, physical activities and positions. The classification was implemented with a Deep Learning network, BioECG, avoiding complex and time-consuming signal transformations. An exhaustive tuning was completed including variations in enrollment length, improving ECG verification for more complex and realistic biometric conditions. Finally, this work studied one-day and two-days enrollments and their effects. Two-days enrollments resulted in huge general improvements even when verification was accomplished with more unstable signals. EER was improved in 63% when including a change of position, up to almost 99% when visits were in a different day and up to 91% if the user experienced a heartbeat increase after exercise.


Sign in / Sign up

Export Citation Format

Share Document