scholarly journals Wireless Body Area Network (WBAN)-Based Telemedicine for Emergency Care

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2153 ◽  
Author(s):  
Latha R ◽  
Vetrivelan P

This paper is a collection of telemedicine techniques used by wireless body area networks (WBANs) for emergency conditions. Furthermore, Bayes’ theorem is proposed for predicting emergency conditions. With prior knowledge, the posterior probability can be found along with the observed evidence. The probability of sending emergency messages can be determined using Bayes’ theorem with the likelihood evidence. It can be viewed as medical decision-making, since diagnosis conditions such as emergency monitoring, delay-sensitive monitoring, and general monitoring are analyzed with its network characteristics, including data rate, cost, packet loss rate, latency, and jitter. This paper explains the network model with 16 variables, with one describing immediate consultation, as well as another three describing emergency monitoring, delay-sensitive monitoring, and general monitoring. The remaining 12 variables are observations related to latency, cost, packet loss rate, data rate, and jitter.

Author(s):  
R Rivera Rodríguez ◽  
O E Olivares Domínguez ◽  
A SerranoSantoyo

Videoconferencing transmission over wireless channels presents relevant challenges in mobile scenarios at vehicular speeds. Previous contributions are focused on the optimization of the transmission of multimedia and delay‐sensitive applications over the forward link. In this paper, a new Quality of Service (QoS) parameter adaptation scheme is proposed. This scheme applies the Cross‐Layer Design technique on the reverse link of an 1xEV‐DO Revision 0 channel. As the wireless channel parameters and the vehicle speed have significant influence in the network layer packet loss rate, it is proposed that the data rate generated by the application adapts itself to the throughput offered by the lower layers as a function of such packet loss rate. Simulations of the proposed model show a significant reduction in losses caused by wireless channel impairments and vehicle mobility, resulting in an improvement in the performance of the mobile videoconferencing session.


Author(s):  
Shilpa Shinde ◽  
Santosh Sonavane

Background and objective: In the Wireless Body Area Network (WBAN) sensors are placed on the human body; which has various mobility patterns like seating, walking, standing and running. This mobility typically assisted with hand and leg movements on which most of the sensors are mounted. Previous studies were largely focused on simulations of WBAN mobility without focusing much on hand and leg movements. Thus for realistic studies on performance of the WBAN, it is important to consider hand and leg movements. Thus, an objective of this paper is to investigate an effect of the mobility patterns with hand movements on the throughput of the WBAN. Method: The IEEE 802.15.6 requirements are considered for WBAN design. The WBAN with star topology is used to connect three sensors and a hub. Three types of mobility viz. standing, walking and running with backward and forward hand movements is designed for simulation purpose. The throughput analysis is carried out with the three sets of simulations with standing, walking and running conditions with the speed of 0 m/s, 0.5 m/s and 3 m/s respectively. The data rate was increased from 250 Kb to 10000 Kb with AODV protocol. It is intended to investigate the effect of the hand movements and the mobility conditions on the throughput. Simulation results are analyzed with the aid of descriptive statistics. A comparative analysis between the simulated model and a mathematical model is also introduced to get more insight into the data. Results: Simulation studies showed that as the data rate is increased, throughput is also increased for all mobility conditions however, this increasing trend was discontinuous. In the standing (static) position, the throughput is found to be higher than mobility (dynamic) condition. It is found that, the throughput is better in the running condition than the walking condition. Average values of the throughput in case of the standing condition were more than that of the dynamic conditions. To validate these results, a mathematical model is created. In the mathematical model, a same trend is observed. Conclusion: Overall, it is concluded that the throughput is decreased due to mobility of the WBAN. It is understood that mathematical models have given more insight into the simulation data and confirmed the negative effect of the mobility conditions on throughput. In the future, it is proposed to investigate effect of interference on the designed network and compare the results.


2017 ◽  
Vol 9 (1) ◽  
pp. 48
Author(s):  
Muhammad Ikhsan Sani

Laju pertambahan  jumlah penduduk yang membutuhkan layanan kesehatan di Indonesia tidak berbanding lurus dengan penambahan jumlah fasilitas kesehatan yang ada. Salah satu solusi alternatif yang dapat digunakan untuk mengatasi masalah tersebut adalah dengan mengembangkan teknologi  Wireless Body Area Network  (WBAN)  sebagai alat bantu layanan  kesehatan.  WBAN  adalah suatu sistem terpadu yang  terdiri atas sekelompok modul sensor yang terdistribusi dan terhubung secara nirkabel pada suatu topologi jaringan  tertentu dan berfungsi untuk mengekstrak dan berbagi informasi untuk diolah sesuai bidang aplikasinya.  Salah satu aplikasi WBAN adalah untuk  analisis gait atau metode untuk mempelajari pola berjalan manusia.  Untuk melakukan proses  analisis gait secara optimal dibutuhkan instrumen sensor  inersia  yang terpasang pada tubuh pasien yang merekam data gait dari pasien. Data dari pasien lalu dikirimkan melalui protokol komunikasi nirkabel ZigBee ke  network  coordinator  yang  berfungsi sebagai pengumpul data.  Jaringan  memiliki  topologi dalam bentuk  star dengan data rate  dari sensor  sebesar  50 Hz.  Data dari  network coordinator  kemudian dibaca pada  PC yang  telah dilengkapi perangkat lunak pengolah data untuk diolah  lebih lanjut.  Sistem diuji pada ruangan koridor sejauh 4 meter dengan nilai RSSI atau kuat sinyal bernilai paling kecil sebesar -64 dBm. Dalam hal konsumsi daya, sensor node dapat digunakan secara berkelanjutan dalam jangka waktu 2 jam 25 menit


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Weixia Zou ◽  
Chao Guo ◽  
Fengyuan Kang ◽  
Chunqing Zhang

An interference avoidance mechanism for Chinese Wireless Body Area Network (WBAN) is proposed in this paper. This mechanism firstly classifies the channels by priority based on the distribution characteristics of potential interference on the China medical band, commits energy detection on all channels in the network initialization phase, and compares to energy threshold to form available channel set. Then differentiated channel maintenance strategy is utilized to avoid interference as far as possible in network running phase. The scheme proposed in this thesis is proved to be superior by simulation from either the interference probability or packet loss rate. Apart from that, the interference detection threshold that can satisfy the least communication demand is calculated for every Type B, C channel by simulation and convenient for referring to.


2021 ◽  
pp. 1-12
Author(s):  
Yinghua Feng ◽  
Wei Yang

In order to overcome the problems of high energy consumption and low execution efficiency of traditional Internet of things (IOT) packet loss rate monitoring model, a new packet loss rate monitoring model based on differential evolution algorithm is proposed. The similarity between each data point in the data space of the Internet of things is set as the data gravity. On the basis of the data gravity, combined with the law of gravity in the data space, the gravity of different data is calculated. At the same time, the size of the data gravity is compared, and the data are classified. Through the classification results, the packet loss rate monitoring model of the Internet of things is established. Differential evolution algorithm is used to solve the model to obtain the best monitoring scheme to ensure the security of network data transmission. The experimental results show that the proposed model can effectively reduce the data acquisition overhead and energy consumption, and improve the execution efficiency of the model. The maximum monitoring efficiency is 99.74%.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kehua Zhao ◽  
Yourong Chen ◽  
Siyi Lu ◽  
Banteng Liu ◽  
Tiaojuan Ren ◽  
...  

To solve the problem of sensing coverage of sparse wireless sensor networks, the movement of sensor nodes is considered and a sensing coverage algorithm of sparse mobile sensor node with trade-off between packet loss rate and transmission delay (SCA_SM) is proposed. Firstly, SCA_SM divides the monitoring area into several grids of same size and establishes a path planning model of multisensor nodes’ movement. Secondly, the social foraging behavior of Escherichia coli in bacterial foraging is used. A fitness function formula of sensor nodes’ moving paths is proposed. The optimal moving paths of all mobile sensor nodes which can cover the entire monitoring area are obtained through the operations of chemotaxis, replication, and migration. The simulation results show that SCA_SM can fully cover the monitoring area and reduce the packet loss rate and data transmission delay in the process of data transmission. Under certain conditions, SCA_SM is better than RAND_D, HILBERT, and TCM.


Sign in / Sign up

Export Citation Format

Share Document