scholarly journals From Sensor to Cloud: An IoT Network of Radon Outdoor Probes to Monitor Active Volcanoes

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2755 ◽  
Author(s):  
Luca Terray ◽  
Laurent Royer ◽  
David Sarramia ◽  
Cyrille Achard ◽  
Etienne Bourdeau ◽  
...  

While radon in soil gases has been identified for decades as a potential precursor of volcanic eruptions, there has been a recent interest for monitoring radon in air on active volcanoes. We present here the first network of outdoor air radon sensors that was installed successfully on Mt. Etna volcano, Sicily, Italy in September 2019. Small radon sensors designed for workers and home dosimetry were tropicalized in order to be operated continuously in harsh volcanic conditions with an autonomy of several months. Two stations have been installed on the south flank of the volcano at ~3000 m of elevation. A private network has been deployed in order to transfer the measurements from the stations directly to a server located in France, using a low-power wide-area transmission technology from Internet of Things (IoT) called LoRaWAN. Data finally feed a data lake, allowing flexibility in data management and sharing. A first analysis of the radon datasets confirms previous observations, while adding temporal information never accessed before. The observed performances confirm IoT solutions are very adapted to active volcano monitoring in terms of range, autonomy, and data loss.

Author(s):  
Titis Octary Satrio ◽  
Arna Fariza ◽  
Mu'arifin Mu'arifin

Indonesia is one of the countries included in the area of the Ring of Fire or the Ring of the Pacific. This fact can be seen that in Indonesia there are 129 active volcanoes and 10 of them are the most active volcanoes. Mount Kelud is the most active volcano in the province of East Java, Indonesia. This mountain is recorded as actively erupting with a relatively short span of time (9-25 years), making it a volcano that is dangerous for humans. Readiness of citizens is very necessary as an effort to prevent and anticipate the eruption of Mount Kelud in the future. Disaster risk level assessments are needed to provide information for citizen and government preparedness in the face of volcanic eruptions. In this paper a new approach is proposed to assess the level of disaster risk of Kelud eruption using Fuzzy methods in each village in the disaster-prone area (KRB). Fuzzy methods classify disaster risk levels based on criteria of hazards, vulnerabilities and index of capacities. The level of disaster risk is divided into low, medium, and high which are spatially mapped. The result of calculations and spatial visualization show that the approach used produces a level of disaster risk that is fairer than only based on hazard.


2011 ◽  
Vol 102 (9) ◽  
pp. 863-870 ◽  
Author(s):  
Marco Neri ◽  
Salvatore Giammanco ◽  
Elisabetta Ferrera ◽  
Giuseppe Patanè ◽  
Vittorio Zanon

2009 ◽  
Vol 47 (5) ◽  
Author(s):  
A. Occhipinti Amato ◽  
M. Elia ◽  
A. Bonaccorso ◽  
G. La Rosa

A 2D finite elements study was carried out to analyse the effects caused by dike intrusion inside a heterogeneous medium and with a realistic topography of Mt. Etna volcano. Firstly, the method (dimension domain, elements type) was calibrated using plane strain models in elastic half-spaces; the results were compared with those obtained from analytical dislocation models. Then the effects caused both by the topographic variations and the presence of multi-layered medium on the surface, were studied. In particular, an application was then considered to Mt. Etna by taking into account the real topography and the stratification deduced from seismic tomography. In these conditions, the effects expected by the dike, employed to model the 2001 eruption under simple elastic half-space medium conditions, were computed, showing that topography is extremely important, at least in the near field.


1996 ◽  
Vol 39 (2) ◽  
Author(s):  
R. Azzaro ◽  
M. S. Barbano

In this paper historical and recent seismological data are analysed in order to investigate the relationship between seismicity and eruptive phenomena at Mt. Etna volcano. The 1883 and 1971 case histories have been proposed because they are significant events in the recent history of the volcano regarding volcanic hazard and show very different evolutions of associated seismic activity and eruption dynamics. The first (1883) represents flank eruptions characterised by high seismic release, short duration and moderate effusion rate whereas the second (1971) can be ascribed to eruptions starting as summit or subterminal events and thereafter developing on the flanks with a minor level of seismicity, higher effusion rate and prolonged duration. The pattern of seismic activity during 1883 and 1971, as inferred from historical record analysis, and the different associated type of eruption may be a result of diverse stress conditions acting on the volcanic system. The interpretation of the seismic behaviour by considering historical eruptions in a systematic fashion will contribute to a clearer understanding of volcanic phenomena at Mt. Etna.


1997 ◽  
Vol 40 (5) ◽  
Author(s):  
G. Patanè ◽  
C. Centamore ◽  
S. La Delfa

This paper analyses twelve etnean earthquakes which occurred at various depths and recorded at least by eleven stations. The seismic stations span a wide part of the volcanic edifice; therefore each set of direct P-wave arrival times at these stations can be considered appropriate for tracing isochronal curves. Using this simple methodology and the results obtained by previous studies the authors make a reconstruction of the geometry of the bodies inside the crust beneath Mt. Etna. These bodies are interpreted as a set of cooled magmatic masses, delimited by low-velocity discontinuities which can be considered, at present, the major feeding systems of the volcano.


1999 ◽  
Vol 42 (3) ◽  
Author(s):  
S. La Delfa ◽  
G. Patanè ◽  
C. Centamore

Data concerning M > 2.5 earthquakes that occurred at Mt. Etna volcano (Sicily, Italy) during the period April 15th - October 29th, 1984 are here presented and discussed. Only those events with reliable focal mechanisms (at least eight polarities) have been considered. Instrumental information comes from local seismic networks run by the University of Catania and the CNRS (Grenoble, France). The results obtained support the hypothesis that the seismicity and the volcanic activity at Mt. Etna are related to a complex stress field, due to the combined effects of the tectonics associated with the interaction between the African and Eurasian plates and the movement of magma into the crust. In particular, we hypothesize that the tectonic forces caused the end of the 1984 eruption, by means of a "locking mechanism".


2014 ◽  
Vol 19 (1) ◽  
pp. 105-119 ◽  
Author(s):  
Edoardo Del Pezzo ◽  
Francesca Bianco ◽  
Elisabetta Giampiccolo ◽  
Giuseppina Tusa ◽  
Tiziana Tuvé
Keyword(s):  

2021 ◽  
Author(s):  
Daniele Carbone ◽  
Laura Antoni-Micollier ◽  
Filippo Greco ◽  
Jean Lautier-Gaud ◽  
Danilo Contrafatto ◽  
...  

<p>The NEWTON-g project [1] proposes a paradigm shift in terrain gravimetry to overcome the limitations imposed by currently available instrumentation. The project targets the development of an innovative gravity imager and the field-test of the new instrumentation through the deployment at Mount Etna volcano (Italy). The gravity imager consists in an array of MEMS-based relative gravimeters anchored on an Absolute Quantum Gravimeter [2].<br>The Absolute Quantum Gravimeter (AQG) is an industry-grade gravimeter measuring g with laser-cooled atoms [3]. Within the NEWTON-g project, an enhanced version of the AQG (AQGB03) has been developed, which is able to produce high-quality data against strong volcanic tremor at the installation site.<br>After reviewing the key principles of the AQG, we present the deployment of the AQGB03 at the Pizzi Deneri (PDN) Volcanological Observatory (North flank of Mt. Etna; 2800 m elevation; 2.5 km from the summit active craters), which was completed in summer 2020. We then show the demonstrated measurement performances of the AQG, in terms of sensitivity and stability. In particular, we report on a reproducible sensitivity to gravity at a level of 1 μGal, even during intense volcanic activity.<br>We also discuss how the time series acquired by AQGB03 at PDN compares with measurements from superconducting gravimeters already installed at Mount Etna. In particular, the significant  correlation with gravity data collected at sites 5 to 9 km away from PDN proves that effects due to bulk mass sources, likely related to volcanic processes, are predominant over possible local and/or instrumental artifacts.<br>This work demonstrates the feasibility to operate a free-falling quantum gravimeter in the field, both as a transportable turn-key device and as a drift-free monitoring device, able to provide high-quality continuous measurements under harsh environmental conditions. It paves the way to a wider use of absolute gravimetry for geophysical monitoring.</p><p>[1] www.newton-g.com</p><p>[2] D. Carbone et al., “The NEWTON-g Gravity Imager: Toward New Paradigms for Terrain Gravimetry”, Front. Earth Sci. 8:573396 (2020)</p><p>[3] V. Ménoret et al., "Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter", Nature Scientific Reports, vol. 8, 12300 (2018)</p>


Sign in / Sign up

Export Citation Format

Share Document