scholarly journals Underwater Localization via Wideband Direction-of-Arrival Estimation Using Acoustic Arrays of Arbitrary Shape

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3862
Author(s):  
Elizaveta Dubrovinskaya ◽  
Veronika Kebkal ◽  
Oleksiy Kebkal ◽  
Konstantin Kebkal ◽  
Paolo Casari

Underwater sensing and remote telemetry tasks necessitate the accurate geo-location of sensor data series, which often requires underwater acoustic arrays. These are ensembles of hydrophones that can be jointly operated in order to, e.g., direct acoustic energy towards a given direction, or to estimate the direction of arrival of a desired signal. When the available equipment does not provide the required level of accuracy, it may be convenient to merge multiple transceivers into a larger acoustic array, in order to achieve better processing performance. In this paper, we name such a structure an “array of opportunity” to signify the often inevitable sub-optimality of the resulting array design, e.g., a distance between nearest array elements larger than half the shortest acoustic wavelength that the array would receive. The most immediate consequence is that arrays of opportunity may be affected by spatial ambiguity, and may require additional processing to avoid large errors in wideband direction of arrival (DoA) estimation, especially as opposed to narrowband processing. We consider the design of practical algorithms to achieve accurate detections, DoA estimates, and position estimates using wideband arrays of opportunity. For this purpose, we rely jointly on DoA and rough multilateration estimates to eliminate spatial ambiguities arising from the array layout. By means of emulations that realistically reproduce underwater noise and acoustic clutter, we show that our algorithm yields accurate DoA and location estimates, and in some cases it allows arrays of opportunity to outperform properly designed arrays. For example, at a signal-to-noise ratio of –20 dB, a 15-element array of opportunity achieves lower average and median localization error (27 m and 12 m, respectively) than a 30-element array with proper λ / 2 element spacing (33 m and 15 m, respectively). We confirm the good accuracy of our approach via emulation results, and through a proof-of-concept lake experiment, where our algorithm applied to a 10-element array of opportunity achieves a 90th-percentile DoA estimation error of 4 ∘ and a 90th-percentile total location error of 5 m when applied to a real 10-element array of opportunity.

2017 ◽  
Vol 6 (3) ◽  
pp. 33
Author(s):  
T. Aslam ◽  
I. Ahmed ◽  
M. I. Aslam ◽  
S. M. U. Ali ◽  
T. Malik

We present an algorithm to estimate direction of arrival (DOA) of an incoming wave received at an array antenna in the scenario where the incoming wave is contaminated by the additive white Gaussian noise and scattered by arbitrary shaped 3D scatterer(s). We present different simulation examples to show the validity of the proposed method. It is observed that the proposed algorithm is capable of closely estimating the DOA of an incoming wave irrespective of the shape of the scatterer provided the decision is made over multiple iterations. Moreover, presence of noise affects the estimate especially in the case of low signal-to-noise ratio (SNR) that gives a relatively large estimation error. However, for larger SNR the DOA estimation is primarily dependent on the scatterer only.


Author(s):  
Ismail El Ouargui ◽  
Said Safi ◽  
Miloud Frikel

The resolution of a Direction of Arrival (DOA) estimation algorithm is determined based on its capability to resolve two closely spaced signals. In this paper, authors present and discuss the minimum number of array elements needed for the resolution of nearby sources in several DOA estimation methods. In the real world, the informative signals are corrupted by Additive White Gaussian Noise (AWGN). Thus, a higher signal-to-noise ratio (SNR) offers a better resolution. Therefore, we show the performance of each method by applying the algorithms in different noise level environments.


2018 ◽  
Vol 232 ◽  
pp. 01012
Author(s):  
Bo Xu ◽  
Zhigang Huang

Direction-of-arrival (DOA) estimation is always a hotspot research in the fields of radar, sonar, communication and so on. And uniform circular arrays (UCAs) are more attractive in the context of DOA estimation since their symmetrical structures have potential to provide two directions coverage. This paper proposed a new DOA estimation method for UCAs via virtual subarray beamforming technique. The method would provide an acceptable DOA estimate even if the number of sources is great than the number of array elements. Also, the performance of the proposed method would hold good when the snapshot length or the signal-to-noise ratio (SNR) is small. Simulations show that the proposed technique offers significantly improved estimation resolution, capacity, and accuracy relative to the existing techniques.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 398
Author(s):  
S. Venkata Rama Rao ◽  
A. Mallikarjuna Prasad ◽  
Ch. Santhi Rani

In this paper, Root-MUSIC algorithm for direction of arrival (DOA) estimation of uncorrelated signals is explored both for uniform linear and uniform circular arrays. The basic problem in Uniform Linear Arrays (ULAs) is Mutual coupling between the individual elements of the antenna array. This problem is reduced in Uniform Circular Arrays (UCAs) because of its symmetric structure. The DOA estimation of uncorrelated signals that have different power levels is simulated on a MATLAB environment. And the noise consider is white across all the array elements. The factors considered for simulation are number of number of snapshots, array elements, radius of circular array, array length, and signal to noise ratio. 


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 168
Author(s):  
Xiaoyong Zhang ◽  
Guojun Zhang ◽  
Zhenzhen Shang ◽  
Shan Zhu ◽  
Peng Chen ◽  
...  

The principle of acoustic energy flux detection method using a single micro electromechanical system (MEMS) vector hydrophone is analyzed in this paper. The probability distribution of acoustic energy flux and the weighted histogram algorithm are discussed. Then, an improved algorithm is proposed. Based on the algorithm, the distribution range of the energy is obtained by a sliding window, the energy center of gravity in the range is considered as the result of direction of arrival (DOA) estimation, and it is proved to be the maximum likelihood estimation of the target direction. The simulation results show that, with the signal to noise ratio (SNR) from −10 dB to 10 dB, the root mean square error (RMSE) of the improved algorithm is reduced by 47.8% on average, and is more accurate in the presence of interference. The experimental results of lake test are consistent with the theory analysis and simulation results.


2020 ◽  
Vol 10 (7) ◽  
pp. 2331
Author(s):  
Chan-Bin Ko ◽  
Joon-Ho Lee

We consider the direction of arrival (DOA) estimation of the frequency hopping (FH) signal. The frequency hopping (FH) signal has been widely used for communication to control UAVs. Since the frequency of the FH signal is continuously changing, a mismatch may occur between the actual frequency of the received signal and the nominal frequency of the array manifold. In this paper, the azimuth and elevation estimation error in DOA estimation due to frequency mismatch are analytically derived. It is shown that the azimuth error is equal to zero and that elevation error depends on true elevation angle of the incident signal, rather than the true azimuth angle of the incident signal. The elevation error is also dependent on the actual frequency and the nominal frequency.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Serdar Ozgur Ata ◽  
Cevdet Isik

Estimating the direction of arrival (DOA) of source signals is an important research interest in application areas including radar, sonar, and wireless communications. In this paper, the problem of DOA estimation is addressed on concentric circular antenna arrays (CCA) in detail as an alternative to the well-known geometries of the uniform linear array (ULA) and uniform circular array (UCA). We define the steering matrix of the CCA geometry and investigate the performance analysis of the array in the DOA-estimation problem by simulations that are realized through varying the parameters of signal-to-noise ratio, number of sensors, and resolution angle of sensor arrays by using the MUSIC (Multiple Signal Classification) algorithm. The results present that CCA geometries provide higher angle resolutions compared to UCA geometries and require less physical area for the same number of sensor elements. However, as a cost-increasing effect, higher computational power is needed to estimate the DOA of source signals in CCAs compared to ULAs.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 5008
Author(s):  
Bodong Zhang ◽  
Xuan Zou ◽  
Tingyi Zhang ◽  
Yunong Tang ◽  
Hao Zeng

The tripole vector antenna comprises three orthogonal dipole antennas, so it could completely capture all the electric field of the incident electromagnetic (EM) wave. Then, the electric field information could be used to estimate the direction of arrival (DOA) of the EM wave if two conditions are satisfied. One is that there exists only one single EM wave in space. The other is that the EM wave is elliptically or circularly polarized. The new estimation method obtains two snapshot vectors through the output of a tripole antenna and computes their cross-product vector. Furthermore, the direction of the cross-product vector is used to estimate the DOA of the EM wave directly. We analyze the statistical characteristics of the DOA estimation error to prove that the new scheme is an asymptotic unbiased estimation. Furthermore, unlike the existing Multiple Signal Classification (MUSIC)-based algorithms, the proposed approach only need one tripole vector antenna instead of an antenna array. Meanwhile, the new method also outperforms existing MUSIC-based algorithms in the term of computational complexity. Finally, the performance and advantages of the proposed method are verified by numerical simulations.


2021 ◽  
Author(s):  
Suat Yetiş ◽  
Özgür TAMER

Abstract In this work, a combined direction-of-arrival (DoA) estimation method for a four element square array is presented. A four element array is a very small planar array and estimation performance with ordinary DoA estimation techniques is considerably low. Main goal in this work is to improve the estimation performance of such an array by estimating the DoA with different geometrical configurations of the array elements and combine the results to evaluate the resulting DoA estimation. The geometrical structures employed are based on the circular, L shaped and linear configurations of the array elements. Performances of the geometries are evaluated and a combining filter based on the weighted results of the geometries is generated. The weighted results evaluated at the output of the filter are superior when compared with individual results of each of the geometries.


Author(s):  
Jingyu Cong ◽  
Xianpeng Wang ◽  
Liangtian Wan ◽  
Mengxing Huang

In this paper, a fast sparse convex optimization algorithm based on a neural network is proposed to improve the direction of arrival estimation. First, a fast [Formula: see text]-sparse representation of the array covariance vector model based on the Hermitian Toeplitz structure of array covariance is established to reduce computational complexity in data dimension and variable number. Then, the estimation error upper bound problem is investigated, and a neural network-aided coefficient selection method is developed. The direction of arrival estimation problem is solved through spectral peak search. Finally, the algorithm is extended to the case of off-grid error. The algorithm’s advantages in accuracy, calculation speed and robustness is verified by the simulations.


Sign in / Sign up

Export Citation Format

Share Document