scholarly journals Voltammetric Determination of Pb(II) by a Ca-MOF-Modified Carbon Paste Electrode Integrated in a 3D-Printed Device

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4442 ◽  
Author(s):  
Evaggelia Vlachou ◽  
Antigoni Margariti ◽  
Giannis S. Papaefstathiou ◽  
Christos Kokkinos

In this work, a voltammetric method based on a metal organic framework (Ca-MOF)-modified carbon paste electrode for lead determination was developed. The MOF-based electrode was packed in a new type of 3D-printed syringe-type integrated device, which was entirely fabricated by a dual extruder 3D printer. After optimization of the operational parameters, a limit of detection of 0.26 µg L−1 Pb(II) was achieved, which is lower than that of existing MOF-based lead sensors. The device was used for Pb(II) determination in fish feed and bottled water samples with high accuracy and reliability. The proposed sensor is suitable for on-site analyses and provides a low-cost integrated transducer for the ultrasensitive routine detection of lead in practical applications.

Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


2020 ◽  
Author(s):  
Luiz Carlos Domingos Batista ◽  
Thiago Izidoro Silva Santos ◽  
José E. Lima Santos ◽  
Djalma Ribeiro Silva ◽  
Carlos A. Martínez‐Huitle

2019 ◽  
Vol 14 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Girish Tigari ◽  
J.G. Manjunatha ◽  
D.K. Ravishankar ◽  
G. Siddaraju

An electrogenerated Polyarginine modified carbon paste electrode (PAMCPE) was fabricated through a simple electropolymerization procedure. The devised electrode was characterized by cyclic voltammetry (CV) and Field Emission Scanning Electron Microscopy (FESEM). This electrode was utilized for electrocatalytic estimation of Riboflavin (RF) and its instantaneous resolution with ascorbic acid (AA) and folic acid (FA) in phosphate buffer solution (PBS) of pH 6.0 by differential pulse voltammetry (DPV). It was observed to be a very responsive electrode for the electrochemical detection and quantification of RF. It was revealed that PAMCPE generates higher current response towards RF contrast to the bare carbon paste electrode (BCPE). Under optimized condition, the RF oxidation current values were linearly reliant on the RF concentration increment with a limit of detection (LOD) of 9.3·10-8 M using DPV. The stable PAMCPE was effectively applied for estimation of RF in B-complex pill and complex human blood serum samples.


2021 ◽  
Vol 16 (1) ◽  
pp. 25-31
Author(s):  
Hayat EL Ouafy ◽  
Tarik EL Ouafy ◽  
Mustapha Oubenali ◽  
Mohamed Mbarki ◽  
Malika Echajia ◽  
...  

The present work describes the catalytic effect of zinc particles for electroanalysis the paracetamol (PAR). The working electrode was prepared by mixing the zinc with the carbon powder. The voltammetric behavior of paracetamol was studied when an anodic peak to appear at 0.35 V in 0.1 M Na2SO4 solution (pH 12). The peak resulting from the irreversible oxidation of paracetamol on the zinc modified carbon paste electrode (Zn/CPE). The catalytic effect was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV). The electrocatalytic behavior of the zinc particles is allotted to its chemical and physical properties. This electrode has a good performance for the electroanalysis of paracetamol. To obtain an electrochemical analysis of paracetamol oxidation at the surface of Zn/CPE, the voltammograms are used in a potential range of - 1.5 V to 1.5 V. More, Zn/CPE can be utilized successfully to ameliorate the electroanalysis of paracetamol at very feeble concentration and with high detection sensitivity. The limit of detection (LD) and quantification (LQ) obtained are respectively 7.52·10-8 mol L-1 and 2.6·10-7 mol L-1. Then the relative standard deviation (RSD) at 2.0·10-5 mol L-1 PAR concentration was 2.88 % for nine repetitions. Afterward, the presented method was used to electroanalysis paracetamol in human blood samples with satisfying results.


2019 ◽  
Author(s):  
Chem Int

In this study voltammetric behaviour of secnidazole (SCZ) at 1, 4-Benzoquinone Modified Carbon Paste Electrode (1,4-BQMCPE) was investigated in Britton Robinson buffer solution using cyclic voltammetric technique. A well-defined cathodic peak was observed for the SCZ in the entire pH range. The current increases steadily with scan rate and the results indicated that the process is irreversible reduction and adsorption controlled. The number of electrons transferred and different kinetic parameters like transfer coefficient and rate constant were calculated by using cyclic voltammetry technique. Differential pulse voltammetric method has been used for the determination of SCZ content in pharmaceutical tablet. This method enabled to determine SCZ in the concentration range 1.0 × 10-8 to 4.0 × 10-4 M. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.13 × 10-9 and 2.85 × 10-9 respectively. The method was applied to determine the content of SCZ in different sample solutions of SCZ tablet with excellent recovery and relative standard deviation results (99.892±1.53 respectively) for spiked standard SCZ in tablet sample solutions. The selectivity of the method for SCZ was further studied in the presence of selected potential interferents such as fluconazole, azithromycin etc and confirmed the potential applicability of the developed method for the determination of SCZ in real pharmaceutical tablets.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
A. B. Teradale ◽  
S. D. Lamani ◽  
B. E. Kumara Swamy ◽  
P. S. Ganesh ◽  
S. N. Das

A polymeric thin film modified electrode, that is, poly(niacinamide) modified carbon paste electrode (MCPE), was developed for the electrochemical determination of catechol (CC) by using cyclic voltammetric technique. Compared to bare carbon paste electrode (BCPE), the poly(niacinamide) MCPE shows good electrocatalytic activity towards the oxidation of catechol in phosphate buffer solution (PBS) of physiological pH 7.4. All experimental parameters were optimized. Poly(niacinamide) modified carbon paste electrode gave a linear response between concentration of CC and its anodic peak current in the range within 20.6–229.0 μM. The limit of detection (3S/M) and limit of quantification (10S/M) were 1.497 μM and 4.99 μM, respectively. From the study of scan rate variation, the electrode process was found to be adsorption-controlled. The involvement of protons and electrons in the oxidation of CC was found to be equal. The probable electropolymerisation mechanism of niacinamide was proposed. Finally, this method can be used in development of a sensor for sensitive determination of CC.


Sign in / Sign up

Export Citation Format

Share Document