titan yellow
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 4)

2021 ◽  
Vol 23 (1) ◽  
pp. 26
Author(s):  
Anna Jagusiak ◽  
Tomasz Gosiewski ◽  
Dorota Romaniszyn ◽  
Małgorzata Lasota ◽  
Anna Wiśniewska ◽  
...  

According to the World Health Organization report, the increasing antibiotic resistance of microorganisms is one of the biggest global health problems. The percentage of bacterial strains showing multidrug resistance (MDR) to commonly used antibiotics is growing rapidly. Therefore, the search for alternative solutions to antibiotic therapy has become critical to combat this phenomenon. It is especially important as frequent and recurring infections can cause cancer. One example of this phenomenon is urinary tract infections that can contribute to the development of human urinary bladder carcinoma. This tumor is one of the most common malignant neoplasms in humans. It occurs almost three times more often in men than in women, and in terms of the number of cases, it is the fifth malignant neoplasm after prostate, lung, colon, and stomach cancer. The risk of developing the disease increases with age. Despite the improvement of its treatment methods, the current outcome in the advanced stages of this tumor is not satisfactory. Hence, there is an urgent need to introduce innovative solutions that will prove effective even in the advanced stage of the disease. In our study, a nanosystem based on ionic silver (Ag+) bound to a carrier—Titan yellow (TY) was analyzed. The possibility of binding the thus formed TY-Ag system to Congo red (CR) and albumin (BSA) was determined. TY-Ag binding to CR provides for better nanosystem solubility and enables its targeted intracellular transport and binding to immune complexes. The binding of TY-Ag or CR-TY-Ag to albumin also protects the system against the uncontrolled release of silver ions. It will also allow the delivery of silver in a targeted manner directly to the desired site in the case of intravenous administration of such a system. In this study, the MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values of the TY-Ag or BSA-TY-Ag systems were determined in two reference strains (Escherichia coli and Staphylococcus aureus). The paper presents nanosystems with a size of about 40–50 nm, with an intense antibacterial effect obtained at concentrations of 0.019 mM. We have also discovered that TY-Ag free or complexed with BSA (with a minimal Ag+ dose of 15–20 mM) inhibited cancer cells proliferation. TY-Ag complex diminished migration and effectively inhibited the T24 cell viability and induced apoptosis. On the basis of the obtained results, it has been shown that the presented systems may have anti-inflammatory and antitumor properties at the same time. TY-Ag or BSA-TY-Ag are new potential drugs and may become in future important therapeutic compounds in human urinary bladder carcinoma treatment and/or potent antimicrobial factors as an alternative to antibiotics.


Surfaces ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 191-204
Author(s):  
Edwin S. D’Souza ◽  
Jamballi G. Manjunatha ◽  
Chenthattil Raril ◽  
Girish Tigari ◽  
Huligerepura J. Arpitha ◽  
...  

A modest, efficient, and sensitive chemically modified electrode was fabricated for sensing curcumin (CRC) through an electrochemically polymerized titan yellow (TY) modified carbon paste electrode (PTYMCPE) in phosphate buffer solution (pH 7.0). Cyclic voltammetry (CV) linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) approaches were used for CRC detection. PTYMCPE interaction with CRC suggests that the electrode exhibits admirable electrochemical response as compared to bare carbon paste electrode (BCPE). Under the optimized circumstances, a linear response of the electrode was observed for CRC in the concentration range 2 × 10−6 M to 10 × 10−6 M with a limit of detection (LOD) of 10.94 × 10−7 M. Moreover, the effort explains that the PTYMCPE electrode has a hopeful approach for the electrochemical resolution of biologically significant compounds. Additionally, the proposed electrode has demonstrated many advantages such as easy preparation, elevated sensitivity, stability, and enhanced catalytic activity, and can be successfully applied in real sample analysis.


2020 ◽  
pp. 113-126
Author(s):  
Biswajit Chowdhury ◽  
Sitangshu Shekhar Pradhan ◽  
Hari Sankar Das ◽  
Bhaskar Biswas

Considering the impact of organic dyes as industrial effluents on the environment, this research study describes the synthesis, structural and morphological characterization, and visible light induced photo-catalytic studies of cobalt oxide nanoparticles (CoONPs). In order to synthesize the CoONPs, a tetra-nuclear cobalt(III)-Schiff base complex was prepared in crystalline phase and employed to produce CoONPs through thermal decomposition of the synthetic precursor. The morphology of the nanoparticle has been delineated with different spectroscopic and analytic methods. Scanning and transmission electron microscopy (FE-SEM and HR-TEM) analyses estimate the cauliflower structured CoONPs with an average size ~80 nm. The photo-catalytic behavior of CoONPs has been tested against murexide and titan yellow dye in aqueous phase. This CoONPs ensure more than 90% of degradation for murexide while ~60% degradation has been observed for titan yellow (TY) in aqueous phase for a same time interval. MX and TY adopt different structures which bring the variation in rate of photosensitization for the synthetic CoONPs photocatalyst and account on the different photocatalytic efficiency towards the degradation of MX and TY in presence of visible light.


2020 ◽  
Vol 234 (3) ◽  
pp. 485-503
Author(s):  
Abdul Malik ◽  
Abbas Khan ◽  
Nasrullah Shah ◽  
Muhammad Sufaid Khan

AbstractThe use of indigenous natural materials and their modification toward fruitful application is one of the important subjects. Thermal modification of Rice Husk at 400 oC resulted into Rice Husk Char (RHC) which was chemically modified with KOH and was labeled as KOH Modified Rice Husk Char (KMRHC). Both RHC and KMRHC were characterized by using, Fourier transformed infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-rays (EDX) and X-ray diffraction (XRD) before and after their use as adsorbents. The prepared material was applied for the removal of toxic dyes, Direct Blue (DB) and Titan Yellow (TY) from aqueous media. The maximum adsorption capacity of DB and TY dyes on KMRHC were inspected as 30.9 mg/g and 28.6 mg/g, respectively at pH 4 using initial dye concentrations of 80 mg/L containing 2500 mg/L of the adsorbent dose with agitation speed of 240 rpm at 303 K. At the same experimental conditions the highest percentage removal of DB and TY on the adsorbent were observed as 96.6% and 89.3%, respectively. Thermodynamics studies of the adsorption of DB and TY dyes on KMRHC inferred for exothermic and spontaneous process. The value of ΔS is negative which suggested that randomness decreases at the interface of adsorbent-adsorbate during the adsorption. The kinetics study indicated that the experimental data of the adsorption process for both dyes, best fits to pseudo-second order kinetic model. The equilibrium data was tested on Langmuir, Freundlich and Temkin adsorption isotherm models. It was observed that the data are best fit to the Langmuir isotherm model (R2 > 0.99), which suggested that the adsorption process is dominated by chemisorption approach. The overall results suggest that various parameters of the adsorption process were not only affected by the variation in experimental conditions but also by the chemical structure of the adsorbate molecules for the same adsorbent.


Sign in / Sign up

Export Citation Format

Share Document