scholarly journals A Recurrent Deep Network for Estimating the Pose of Real Indoor Images from Synthetic Image Sequences

Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5492
Author(s):  
Debaditya Acharya ◽  
Sesa Singha Roy ◽  
Kourosh Khoshelham ◽  
Stephan Winter

Recently, deep convolutional neural networks (CNN) have become popular for indoor visual localisation, where the networks learn to regress the camera pose from images directly. However, these approaches perform a 3D image-based reconstruction of the indoor spaces beforehand to determine camera poses, which is a challenge for large indoor spaces. Synthetic images derived from 3D indoor models have been used to eliminate the requirement of 3D reconstruction. A limitation of the approach is the low accuracy that occurs as a result of estimating the pose of each image frame independently. In this article, a visual localisation approach is proposed that exploits the spatio-temporal information from synthetic image sequences to improve localisation accuracy. A deep Bayesian recurrent CNN is fine-tuned using synthetic image sequences obtained from a building information model (BIM) to regress the pose of real image sequences. The results of the experiments indicate that the proposed approach estimates a smoother trajectory with smaller inter-frame error as compared to existing methods. The achievable accuracy with the proposed approach is 1.6 m, which is an improvement of approximately thirty per cent compared to the existing approaches. A Keras implementation can be found in our Github repository.

2020 ◽  
Vol 12 (24) ◽  
pp. 10686
Author(s):  
Mona Abouhamad ◽  
Metwally Abu-Hamd

The objective of this paper is to apply the life cycle assessment methodology to assess the environmental impacts of light steel framed buildings fabricated from cold formed steel (CFS) sections. The assessment covers all phases over the life span of the building from material production, construction, use, and the end of building life, in addition to loads and benefits from reuse/recycling after building disposal. The life cycle inventory and environmental impact indicators are estimated using the Athena Impact Estimator for Buildings. The input data related to the building materials used are extracted from a building information model of the building while the operating energy in the use phase is calculated using an energy simulation software. The Athena Impact Estimator calculates the following mid-point environmental measures: global warming potential (GWP), acidification potential, human health potential, ozone depletion potential, smog potential, eutrophication potential, primary and non-renewable energy (PE) consumption, and fossil fuel consumption. The LCA assessment was applied to a case study of a university building. Results of the case study related to GWP and PE were as follows. The building foundations were responsible for 29% of the embodied GWP and 20% of the embodied PE, while the CFS skeleton was responsible for 30% of the embodied GWP and 49% of the embodied PE. The production stage was responsible for 90% of the embodied GWP and embodied PE. When benefits associated with recycling/reuse were included in the analysis according to Module D of EN 15978, the embodied GWP was reduced by 15.4% while the embodied PE was reduced by 6.22%. Compared with conventional construction systems, the CFS framing systems had much lower embodied GWP and PE.


2013 ◽  
Vol 368-370 ◽  
pp. 78-82
Author(s):  
Ping Shu ◽  
Jun Xu ◽  
Li Jun Wang

Based on theoretical studies of the urban spatial morphology, this paper introduces advanced concepts and methods of BIM (Building Information Model) into the urban design in Nanhe City ,and then respectively makes innovations of the urban design practice supported by BIM technology in the process of design, optimization and implementation of the program, attempting to explore BIM-based design patterns of the urban spatial morphology to make the traditional urban design process more rational and scientific, to expect to reach the green and sustainable urban spatial morphology.


2021 ◽  
pp. 56-60
Author(s):  
Alexander P. Konstantinov

The paper presents a method for assessing the daylighting of premises, which can be used directly at the stage of architectural and construction design of buildings in building information model (BIM) software complexes. The calculation method is based on the calculation of the sky factor by constructing a solid angle formed by the calculated point and the light opening of the outer wall. These operations are proposed to be performed automatically using visual programming programs that work together with the BIM complexes. Since the considered calculation method is based on the idea of the physical meaning of the daylight factor, it can be used to evaluate the daylighting according to almost any regulatory method. At the same time, all the data necessary for the calculation can be obtained directly from the building information model. The method is universal and can be used both for the calculation of side and top daylighting, considering the surrounding development. The proposed method can also be used as a tool for finding the best design solution for translucent structures of the designed building based on the requirements of thermal protection, daylighting, and safety.


Author(s):  
Anton C. Harfmann ◽  
Jennifer Bray ◽  
Christine Carlo ◽  
Samuel Carl ◽  
Tyler Gentry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document