scholarly journals A Novel Approach of Parallel Retina-Like Computational Ghost Imaging

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7093
Author(s):  
Jie Cao ◽  
Dong Zhou ◽  
Fanghua Zhang ◽  
Huan Cui ◽  
Yingqiang Zhang ◽  
...  

Computational ghost imaging (CGI), with the advantages of wide spectrum, low cost, and robustness to light scattering, has been widely used in many applications. The key issue is long time correlations for acceptable imaging quality. To overcome the issue, we propose parallel retina-like computational ghost imaging (PRGI) method to improve the performance of CGI. In the PRGI scheme, sampling and reconstruction are carried out by using the patterns which are divided into blocks from designed retina-like patterns. Then, the reconstructed image of each block is stitched into the entire image corresponding to the object. The simulations demonstrate that the proposed PRGI method can obtain a sharper image while greatly reducing the time cost than CGI based on compressive sensing (CSGI), parallel architecture (PGI), and retina-like structure (RGI), thereby improving the performance of CGI. The proposed method with reasonable structure design and variable selection may lead to improve performance for similar imaging methods and provide a novel technique for real-time imaging applications.

2014 ◽  
Vol 21 (3) ◽  
pp. 433-446 ◽  
Author(s):  
Mohammad Arkani ◽  
Hossein Khalafi ◽  
Naser Vosoughi

Abstract An embedded time interval data acquisition system (DAS) is developed for zero power reactor (ZPR) noise experiments. The system is capable of measuring the correlation or probability distribution of a random process. The design is totally implemented on a single Field Programmable Gate Array (FPGA). The architecture is tested on different FPGA platforms with different speed grades and hardware resources. Generic experimental values for time resolution and inter-event dead time of the system are 2.22 ns and 6.67 ns respectively. The DAS can record around 48-bit x 790 kS/s utilizing its built-in fast memory. The system can measure very long time intervals due to its 48-bit timing structure design. As the architecture can work on a typical FPGA, this is a low cost experimental tool and needs little time to be established. In addition, revisions are easily possible through its reprogramming capability. The performance of the system is checked and verified experimentally.


2022 ◽  
Vol 12 (2) ◽  
pp. 533
Author(s):  
Alessio Ferrato ◽  
Carla Limongelli ◽  
Mauro Mezzini ◽  
Giuseppe Sansonetti

Nowadays, technology makes it possible to admire objects and artworks exhibited all over the world remotely. We have been able to appreciate this convenience even more in the last period, in which the pandemic has forced us into our homes for a long time. However, visiting art sites in person remains a truly unique experience. Even during on-site visits, technology can help make them much more satisfactory, by assisting visitors during the fruition of cultural and artistic resources. To this aim, it is necessary to monitor the active user for acquiring information about their behavior. We, therefore, need systems able to monitor and analyze visitor behavior. The literature proposes several techniques for the timing and tracking of museum visitors. In this article, we propose a novel approach to indoor tracking that can represent a promising and non-expensive solution for some of the critical issues that remain. In particular, the system we propose relies on low-cost equipment (i.e., simple badges and off-the-shelf RGB cameras) and harnesses one of the most recent deep neural networks (i.e., Faster R-CNN) for detecting specific objects in an image or a video sequence with high accuracy. An experimental evaluation performed in a real scenario, namely, the “Exhibition of Fake Art” at Roma Tre University, allowed us to test our system on site. The collected data has proven to be accurate and helpful for gathering insightful information on visitor behavior.


Author(s):  
S. L. Canfield ◽  
J. W. Beard ◽  
R. D. Parsons ◽  
N. Lobontiu ◽  
M. Paine ◽  
...  

Abstract This paper will present the development of two spatial compliant manipulators suitable for fabrication at a miniature or micro level and positioning on a micro or nano scale. These compliant manipulators are based on a parallel architecture that provides rotational motion about two axes and translations in one to three directions. These compliant devices form the first in a class of such compliant manipulators that combine the characteristics of parallel manipulators with the low cost, small-scale capabilities resulting from a compliant structure design. These manipulators will be developed as lumped-compliance devices, having architectures with relatively rigid links and compliant joints designed to render nearly equivalent kinematic motion. Appropriate kinematic models are developed for design and control. The work is then demonstrated through development of a 3 degree-of-freedom miniature compliant manipulator (MCM) and a five degree-of-freedom (dof) compliant manipulator for micro-pointing applications.


2020 ◽  
Author(s):  
Swecha FSMI

Video Conferencing (VC) systems have been around for a long time now. The use and adoption of such software increased exponentially in the current times due to the physical distancing norms imposed to contain the Covid-19 pandemic across the world. This has necessiated a need for robust, secure and privacy-preserving solutions while keeping the costs low is crucial for wide-spread usage. Another important factor is scalability and usability in lowbandwidth environments. In this paper, we describe a novel approach to creating a VC system satisfying the above parameters built on free software technologies. At the end, we discuss ideas for further work and scope for improvements.


Author(s):  
Yasunobu Iwai ◽  
Koichi Shinozaki ◽  
Daiki Tanaka

Abstract Compared with space parts, consumer parts are highly functional, low cost, compact and lightweight. Therefore, their increased usage in space applications is expected. Prior testing and evaluation on space applicability are necessary because consumer parts do not have quality guarantees for space application [1]. However, in the conventional reliability evaluation method, the test takes a long time, and the problem is that the robustness of the target sample can’t be evaluated in a short time. In this report, we apply to the latest TSOP PEM (Thin Small Outline Package Plastic Encapsulated Microcircuit) an evaluation method that combines preconditioning and HALT (Highly Accelerated Limit Test), which is a test method that causes failures in a short time under very severe environmental conditions. We show that this method can evaluate the robustness of TSOP PEMs including solder connections in a short time. In addition, the validity of this evaluation method for TSOP PEM is shown by comparing with the evaluation results of thermal shock test and life test, which are conventional reliability evaluation methods.


2015 ◽  
Vol 2 (3-4) ◽  
pp. 201-205
Author(s):  
Igor Ille ◽  
Sebastian Mojrzisch ◽  
Jens Twiefel

Abstract Ultrasonic actuators are used for a wide field of applications. The vibration energy can be used to realize many processes like ultrasonic welding or bonding. Furthermore there are many processes which run more efficient and faster combined with ultrasonic vibration like ultrasonic-assisted turning or drilling. Piezoelectric transducers are the main part of those applications. Most of the applications have a time-variant load behavior and need an amplitude feedback control to guarantee a stable process. To ensure correct function tests of the feedback control systems have to be done. In this case the processes have to be executed in association with a high number of cycles. To emulate the behavior of the environment the automotive and aerospace industries use hardware in the loop systems since a long time but there is no such a method for ultrasonic systems. This paper presents a method to realize high dynamic load emulation for different ultrasonic applications. Using a piezoelectric transformer it is possible to reproduce load curves by active damping on the secondary side of the transformer using a current proportional digital feedback circuit. A theoretical and experimental study of hardware in the loop system for ultrasonic applications is given by this paper. The present system allows testing a wide field of feedback control algorithms with high flexibility and a high number of cycles by utilization of low-cost components. This proceeding decreases design periods in association with feedback control.


2021 ◽  
Vol 45 (3) ◽  
pp. 422-457
Author(s):  
A. Friedberg ◽  
Juni Hoppe

The almost verbatim parallels of the dietary laws in Lev. 11 and Deut. 14 have baffled scholars for a long time. We reexamine the evidence, offer a novel approach to determining the direction of dependency, and point out the notable similarities the borrowing bears to Second Temple editorial and redactional practices, drawing on recent Qumran scholarship. We conclude that Deut. 14.3–21 may be one of the earliest specimens of Rewritten Scripture.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3694
Author(s):  
Luminita Georgeta Confederat ◽  
Cristina Gabriela Tuchilus ◽  
Maria Dragan ◽  
Mousa Sha’at ◽  
Oana Maria Dragostin

Despite the advantages presented by synthetic polymers such as strength and durability, the lack of biodegradability associated with the persistence in the environment for a long time turned the attention of researchers to natural polymers. Being biodegradable, biopolymers proved to be extremely beneficial to the environment. At present, they represent an important class of materials with applications in all economic sectors, but also in medicine. They find applications as absorbers, cosmetics, controlled drug delivery, tissue engineering, etc. Chitosan is one of the natural polymers which raised a strong interest for researchers due to some exceptional properties such as biodegradability, biocompatibility, nontoxicity, non-antigenicity, low-cost and numerous pharmacological properties as antimicrobial, antitumor, antioxidant, antidiabetic, immunoenhancing. In addition to this, the free amino and hydroxyl groups make it susceptible to a series of structural modulations, obtaining some derivatives with different biomedical applications. This review approaches the physico-chemical and pharmacological properties of chitosan and its derivatives, focusing on the antimicrobial potential including mechanism of action, factors that influence the antimicrobial activity and the activity against resistant strains, topics of great interest in the context of the concern raised by the available therapeutic options for infections, especially with resistant strains.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5697
Author(s):  
Chang Sun ◽  
Shihong Yue ◽  
Qi Li ◽  
Huaxiang Wang

Component fraction (CF) is one of the most important parameters in multiple-phase flow. Due to the complexity of the solid–liquid two-phase flow, the CF estimation remains unsolved both in scientific research and industrial application for a long time. Electrical resistance tomography (ERT) is an advanced type of conductivity detection technique due to its low-cost, fast-response, non-invasive, and non-radiation characteristics. However, when the existing ERT method is used to measure the CF value in solid–liquid two-phase flow in dredging engineering, there are at least three problems: (1) the dependence of reference distribution whose CF value is zero; (2) the size of the detected objects may be too small to be found by ERT; and (3) there is no efficient way to estimate the effect of artifacts in ERT. In this paper, we proposed a method based on the clustering technique, where a fast-fuzzy clustering algorithm is used to partition the ERT image to three clusters that respond to liquid, solid phases, and their mixtures and artifacts, respectively. The clustering algorithm does not need any reference distribution in the CF estimation. In the case of small solid objects or artifacts, the CF value remains effectively computed by prior information. To validate the new method, a group of typical CF estimations in dredging engineering were implemented. Results show that the new method can effectively overcome the limitations of the existing method, and can provide a practical and more accurate way for CF estimation.


Author(s):  
W. H. Matthaeus ◽  
Minping Wan ◽  
S. Servidio ◽  
A. Greco ◽  
K. T. Osman ◽  
...  

An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.


Sign in / Sign up

Export Citation Format

Share Document