scholarly journals A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under Inconsistent Working Conditions

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7205
Author(s):  
Md Junayed Hasan ◽  
Muhammad Sohaib ◽  
Jong-Myon Kim

Rolling element bearings are a vital part of rotating machines and their sudden failure can result in huge economic losses as well as physical causalities. Popular bearing fault diagnosis techniques include statistical feature analysis of time, frequency, or time-frequency domain data. These engineered features are susceptible to variations under inconsistent machine operation due to the non-stationary, non-linear, and complex nature of the recorded vibration signals. To address these issues, numerous deep learning-based frameworks have been proposed in the literature. However, the logical reasoning behind crack severities and the longer training times needed to identify multiple health characteristics at the same time still pose challenges. Therefore, in this work, a diagnosis framework is proposed that uses higher-order spectral analysis and multitask learning (MTL), while also incorporating transfer learning (TL). The idea is to first preprocess the vibration signals recorded from a bearing to look for distinct patterns for a given fault type under inconsistent working conditions, e.g., variable motor speeds and loads, multiple crack severities, compound faults, and ample noise. Later, these bispectra are provided as an input to the proposed MTL-based convolutional neural network (CNN) to identify the speed and the health conditions, simultaneously. Finally, the TL-based approach is adopted to identify bearing faults in the presence of multiple crack severities. The proposed diagnostic framework is evaluated on several datasets and the experimental results are compared with several state-of-the-art diagnostic techniques to validate the superiority of the proposed model under inconsistent working conditions.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Author(s):  
Jialin Li ◽  
Xueyi Li ◽  
David He ◽  
Yongzhi Qu

In recent years, research on gear pitting fault diagnosis has been conducted. Most of the research has focused on feature extraction and feature selection process, and diagnostic models are only suitable for one working condition. To diagnose early gear pitting faults under multiple working conditions, this article proposes to develop a domain adaptation diagnostic model–based improved deep neural network and transfer learning with raw vibration signals. A particle swarm optimization algorithm and L2 regularization are used to optimize the improved deep neural network to improve the stability and accuracy of the diagnosis. When using the domain adaptation diagnostic model for fault diagnosis, it is necessary to discriminate whether the target domain (test data) is the same as the source domain (training data). If the target domain and the source domain are consistent, the trained improved deep neural network can be used directly for diagnosis. Otherwise, the transfer learning is combined with improved deep neural network to develop a deep transfer learning network to improve the domain adaptability of the diagnostic model. Vibration signals for seven gear types with early pitting faults under 25 working conditions collected from a gear test rig are used to validate the proposed method. It is confirmed by the validation results that the developed domain adaptation diagnostic model has a significant improvement in the adaptability of multiple working conditions.


Author(s):  
Xudong Song ◽  
Dajie Zhu ◽  
Pan Liang ◽  
Lu An

Although the existing transfer learning method based on deep learning can realize bearing fault diagnosis under variable load working conditions, it is difficult to obtain bearing fault data and the training data of fault diagnosis model is insufficient£¬which leads to the low accuracy and generalization ability of fault diagnosis model, A fault diagnosis method based on improved elastic net transfer learning under variable load working conditions is proposed. The improved elastic net transfer learning is used to suppress the over fitting and improve the training efficiency of the model, and the long short-term memory network is introduced to train the fault diagnosis model, then a small amount of target domain data is used to fine tune the model parameters. Finally, the fault diagnosis model under variable load working conditions based on improved elastic net transfer learning is constructed. Finally, through model experiments and comparison with conventional deep learning fault diagnosis models such as long short-term memory network (LSTM), gated recurrent unit (GRU) and Bi-LSTM, it shows that the proposed method has higher accuracy and better generalization ability, which verifies the effectiveness of the method.


2021 ◽  
Author(s):  
Nanyang Zhao ◽  
Jinjie Zhang ◽  
Zhiwei Mao ◽  
Zhinong Jiang ◽  
He Li

Abstract Reciprocating machinery, e.g., diesel engines and reciprocating compressors, is the key power component in petroleum, petrochemical, nuclear power, and shipbuilding industries. Vibration signals have the characteristics of multi-source strong shock coupling and strong noise interference owing to the complex structure of reciprocating machinery; therefore, it is difficult to extract, analyze, and diagnose mechanical fault features. Moreover, failures occur frequently every year, causing serious economic losses. To accurately and efficiently extract sensitive features from the strong noise interference and unsteady monitoring signals of reciprocating machinery, a study on the time-frequency feature extraction method of multi-source shock signals was conducted. Combining the characteristics of reciprocating mechanical vibration signals, a targeted optimization method considering the variational modal decomposition (VMD) mode number K and second penalty factor was proposed, which completed the adaptive decomposition of coupled signals. Aiming at the bilateral asymmetric attenuation characteristics of reciprocating mechanical shock signals, a new bilateral adaptive Laplace wavelet (BALW) was established. A search strategy for wavelet local parameters of multi-impact signals was proposed using the harmony search (HS) method. A multi-source shock simulation signal was established and actual data of the valve fault were obtained through diesel engine fault experiments. The test results demonstrated that the new method achieved adaptive extraction of local shock features of non-stationary multi-source shock signals and was superior to the original method in terms of signal decomposition effect, sensitive feature extraction, fault recognition accuracy, and parameter search time. The fault recognition rate of the intake and exhaust valve clearance was above 90% and the extraction accuracy of the shock start position was improved by 10°.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2130
Author(s):  
Xiaoyan Liu ◽  
Yigang He ◽  
Lei Wang

Vibration signal analysis is an efficient online transformer fault diagnosis method for improving the stability and safety of power systems. Operation in harsh interference environments and the lack of fault samples are the most challenging aspects of transformer fault diagnosis. High-precision performance is difficult to achieve when using conventional fault diagnosis methods. Thus, this study proposes a transformer fault diagnosis method based on the adaptive transfer learning of a two-stream densely connected residual shrinkage network over vibration signals. First, novel time-frequency analysis methods (i.e., Synchrosqueezed Wavelet Transform and Synchrosqueezed Generalized S-transform) are proposed to convert vibration signals into different images, effectively expanding the samples and extracting effective features of signals. Second, a Two-stream Densely Connected Residual Shrinkage (TSDen2NetRS) network is presented to achieve a high accuracy fault diagnosis under different working conditions. Furthermore, the Residual Shrinkage layer (RS layer) is applied as a nonlinear transformation layer to the deep learning framework to remove unimportant features and enhance anti-interference performance. Lastly, an adaptive transfer learning algorithm that can automatically select the source data set by using the domain measurement method is proposed. This algorithm accelerates the training of the deep learning network and improves accuracy when the number of samples is small. Vibration experiments of transformers are conducted under different operating conditions, and their results show the effectiveness and robustness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6039
Author(s):  
Kai Wang ◽  
Wei Zhao ◽  
Aidong Xu ◽  
Peng Zeng ◽  
Shunkun Yang

Data-driven bearing-fault diagnosis methods have become a research hotspot recently. These methods have to meet two premises: (1) the distributions of the data to be tested and the training data are the same; (2) there are a large number of high-quality labeled data. However, machines usually work under different working conditions in practice, which challenges these prerequisites due to the fact that the data distributions under different working conditions are different. In this paper, the one-dimensional Multi-Scale Domain Adaptive Network (1D-MSDAN) is proposed to address this issue. The 1D-MSDAN is a kind of deep transfer model, which uses both feature adaptation and classifier adaptation to guide the multi-scale convolutional neural network to perform bearing-fault diagnosis under varying working conditions. Feature adaptation is performed by both multi-scale feature adaptation and multi-level feature adaptation, which helps in finding domain-invariant features by minimizing the distribution discrepancy between different working conditions by using the Multi-kernel Maximum Mean Discrepancy (MK-MMD). Furthermore, classifier adaptation is performed by entropy minimization in the target domain to bridge the source classifier and target classifier to further eliminate domain discrepancy. The Case Western Reserve University (CWRU) bearing database is used to validate the proposed 1D-MSDAN. The experimental results show that the diagnostic accuracy for the 12 transfer tasks performed by 1D-MSDAN was superior to that of the mainstream transfer learning models for bearing-fault diagnosis under variable working conditions. In addition, the transfer learning performance of 1D-MSDAN for multi-target domain adaptation and real industrial scenarios was also verified.


2020 ◽  
Vol 2020 ◽  
pp. 1-18 ◽  
Author(s):  
Yan Du ◽  
Aiming Wang ◽  
Shuai Wang ◽  
Baomei He ◽  
Guoying Meng

Fault diagnosis plays a very important role in ensuring the safe and reliable operations of machines. Currently, the deep learning-based fault diagnosis is attracting increasing attention. However, fault diagnosis under variable working conditions has been a significant challenge due to the domain discrepancy problem. This problem is also unavoidable in deep learning-based fault diagnosis methods. This paper contributes to the ongoing investigation by proposing a new approach for the fault diagnosis under variable working conditions based on STFT and transfer deep residual network (TDRN). The STFT was employed to convert vibration signal to time-frequency image as the input of the TDRN. To address the domain discrepancy problem, the TDRN was developed in this paper. Unlike traditional deep convolutional neural network (DCNN) methods, by combining with transfer learning, the TDRN can make a bridge between two different working conditions, thereby using the knowledge learned from a working condition to achieve a high classification accuracy in another working condition. Moreover, since the residual learning is introducing, the TDRN can overcome the problems of training difficulty and performance degradation existing in traditional DCNN methods, thus further improving the classification accuracy. Experiments are conducted on the popular CWRU bearing dataset to validate the effectiveness and superiority of the proposed approach. The results show that the developed TDRN outperforms those methods without transfer learning and/or residual learning in terms of the accuracy and feature learning ability for the fault diagnosis under variable working conditions.


Sign in / Sign up

Export Citation Format

Share Document