scholarly journals A Survey of Smartphone-Based Indoor Positioning System Using RF-Based Wireless Technologies

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7230
Author(s):  
Santosh Subedi ◽  
Jae-Young Pyun

In recent times, social and commercial interests in location-based services (LBS) are significantly increasing due to the rise in smart devices and technologies. The global navigation satellite systems (GNSS) have long been employed for LBS to navigate and determine accurate and reliable location information in outdoor environments. However, the GNSS signals are too weak to penetrate buildings and unable to provide reliable indoor LBS. Hence, GNSS’s incompetence in the indoor environment invites extensive research and development of an indoor positioning system (IPS). Various technologies and techniques have been studied for IPS development. This paper provides an overview of the available smartphone-based indoor localization solutions that rely on radio frequency technologies. As fingerprinting localization is mostly accepted for IPS development owing to its good localization accuracy, we discuss fingerprinting localization in detail. In particular, our analysis is more focused on practical IPS that are realized using a smartphone and Wi-Fi/Bluetooth Low Energy (BLE) as a signal source. Furthermore, we elaborate on the challenges of practical IPS, the available solutions and comprehensive performance comparison, and present some future trends in IPS development.

Author(s):  
C. Basri ◽  
A. Elkhadimi

Abstract. The advancement of Internet of things (IoT) has revolutionized the field of telecommunication opening the door for interesting applications such as smart cities, resources management, logistics and transportation, wearables and connected healthcare. The emergence of IoT in multiple sectors has enabled the requirement for an accurate real time location information. Location-based services are actually, due to development of networks, sensors, wireless communications and machine learning algorithms, able to collect and transmit data in order to determine the target positions, and support the needs imposed by several applications and use cases. The performance of an indoor positioning system in IoT networks depends on the technical implementation, network architecture, the deployed technology, techniques and algorithms of positioning. This paper highlights the importance of indoor localization in internet of things applications, gives a comprehensive review of indoor positioning techniques and methods implemented in IoT networks, and provides a detailed analysis on recent advances in this field.


2017 ◽  
Vol 71 (2) ◽  
pp. 299-316 ◽  
Author(s):  
Falin Wu ◽  
Yuan Liang ◽  
Yong Fu ◽  
Chenghao Geng

The demand for accurate indoor positioning continues to grow but the predominant positioning technologies such as Global Navigation Satellite Systems (GNSS) are not suitable for indoor environments due to multipath effects and Non-Line-Of-Sight (NLOS) conditions. This paper presents a new indoor positioning system using artificial encoded magnetic fields, which has good properties for NLOS conditions and fewer multipath effects. The encoded magnetic fields are generated by multiple beacons; each beacon periodically generates unique magnetic field sequences, which consist of a gold code sequence and a beacon location sequence. The position of an object can be determined with measurements from a tri-axial magnetometer using a three-step method: performing time synchronisation between sensor and beacons, identifying the beacon field and the beacon location, and estimating the position of the object. The results of the simulation and experiment show that the proposed system is capable of achieving Two-Dimensional (2D) and Three-Dimensional (3D) accuracy at sub-decimetre and decimetre levels, respectively.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 639 ◽  
Author(s):  
Osamah Abdullah

Modern indoor positioning system services are important technologies that play vital roles in modern life, providing many services such as recruiting emergency healthcare providers and for security purposes. Several large companies, such as Microsoft, Apple, Nokia, and Google, have researched location-based services. Wireless indoor localization is key for pervasive computing applications and network optimization. Different approaches have been developed for this technique using WiFi signals. WiFi fingerprinting-based indoor localization has been widely used due to its simplicity, and algorithms that fingerprint WiFi signals at separate locations can achieve accuracy within a few meters. However, a major drawback of WiFi fingerprinting is the variance in received signal strength (RSS), as it fluctuates with time and changing environment. As the signal changes, so does the fingerprint database, which can change the distribution of the RSS (multimodal distribution). Thus, in this paper, we propose that symmetrical Hölder divergence, which is a statistical model of entropy that encapsulates both the skew Bhattacharyya divergence and Cauchy–Schwarz divergence that are closed-form formulas that can be used to measure the statistical dissimilarities between the same exponential family for the signals that have multivariate distributions. The Hölder divergence is asymmetric, so we used both left-sided and right-sided data so the centroid can be symmetrized to obtain the minimizer of the proposed algorithm. The experimental results showed that the symmetrized Hölder divergence consistently outperformed the traditional k nearest neighbor and probability neural network. In addition, with the proposed algorithm, the position error accuracy was about 1 m in buildings.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1059
Author(s):  
Han Jun Bae ◽  
Lynn Choi

As the proportion and importance of the indoor spaces in daily life are gradually increasing, spatial information and personal location information become more important in indoor spaces. In order to apply indoor positioning technologies in any places and for any targets inexpensively and easily, the system should utilize simple sensors and devices. In addition, due to the scalability, it is necessary to perform indoor positioning algorithms on the device itself, not on the server. In this paper, we construct standalone embedded hardware for performing the indoor positioning algorithm. We use the geomagnetic field for indoor localization, which does not require the installation of infrastructure and has more stable signal strength than RF RSS. In addition, we propose low-memory schemes based on the characteristics of the geomagnetic sensor measurement and convergence of the target’s estimated positions in order to implement indoor positioning algorithm to the hardware. We evaluate the performance in two testbeds: Hana Square (about 94 m × 26 m) and SK Future Hall (about 60 m × 38 m) indoor testbeds. We can reduce flash memory usage to 16.3% and 6.58% for each testbed and SRAM usage to 8.78% and 23.53% for each testbed with comparable localization accuracy to the system based on smart devices without low-memory schemes.


Building a precise low cost indoor positioning and navigation wireless system is a challenging task. The accuracy and cost should be taken together into account. Especially, when we need a system to be built in a harsh environment. In recent years, several researches have been implemented to build different indoor positioning system (IPS) types for human movement using wireless commercial sensors. The aim of this paper is to prove that it is not always the case that having a larger number of anchor nodes will increase the accuracy. Two and three anchor nodes of ultra-wide band with or without the commercial devices (DW 1000) could be implemented in this work to find the Localization of objects in different indoor positioning system, for which the results showed that sometimes three anchor nodes are better than two and vice versa. It depends on how to install the anchor nodes in an appropriate scenario that may allow utilizing a smaller number of anchors while maintaining the required accuracy and cost.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Haixia Wang ◽  
Junliang Li ◽  
Wei Cui ◽  
Xiao Lu ◽  
Zhiguo Zhang ◽  
...  

Mobile Robot Indoor Positioning System has wide application in the industry and home automation field. Unfortunately, existing mobile robot indoor positioning methods often suffer from poor positioning accuracy, system instability, and need for extra installation efforts. In this paper, we propose a novel positioning system which applies the centralized positioning method into the mobile robot, in which real-time positioning is achieved via interactions between ARM and computer. We apply the Kernel extreme learning machine (K-ELM) algorithm as our positioning algorithm after comparing four different algorithms in simulation experiments. Real-world indoor localization experiments are conducted, and the results demonstrate that the proposed system can not only improve positioning accuracy but also greatly reduce the installation efforts since our system solely relies on Wi-Fi devices.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3657 ◽  
Author(s):  
Michał R. Nowicki ◽  
Piotr Skrzypczyński

WiFi-based fingerprinting is promising for practical indoor localization with smartphones because this technique provides absolute estimates of the current position, while the WiFi infrastructure is ubiquitous in the majority of indoor environments. However, the application of WiFi fingerprinting for positioning requires pre-surveyed signal maps and is getting more restricted in the recent generation of smartphones due to changes in security policies. Therefore, we sought new sources of information that can be fused into the existing indoor positioning framework, helping users to pinpoint their position, even with a relatively low-quality, sparse WiFi signal map. In this paper, we demonstrate that such information can be derived from the recognition of camera images. We present a way of transforming qualitative information of image similarity into quantitative constraints that are then fused into the graph-based optimization framework for positioning together with typical pedestrian dead reckoning (PDR) and WiFi fingerprinting constraints. Performance of the improved indoor positioning system is evaluated on different user trajectories logged inside an office building at our University campus. The results demonstrate that introducing additional sensing modality into the positioning system makes it possible to increase accuracy and simultaneously reduce the dependence on the quality of the pre-surveyed WiFi map and the WiFi measurements at run-time.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Sajida Imran ◽  
Young-Bae Ko

WLAN based localization is a key technique of location-based services (LBS) indoors. However, the indoor environment is complex; received signal strength (RSS) is highly uncertain, multimodal, and nonlinear. The traditional location estimation methods fail to provide fair estimation accuracy under the said environment. We proposed a novel indoor positioning system that considers the nonlinear discriminative feature extraction of RSS using kernel local Fisher discriminant analysis (KLFDA). KLFDA extracts location features in a well-preserved kernelized space. In the new kernel featured space, nonlinear RSS features are characterized effectively. Along with handling of nonlinearity, KLFDA also copes well with the multimodality in the RSS data. By performing KLFDA, the discriminating information contained in RSS is reorganized and maximally extracted. Prior to feature extraction, we performed outlier detection on RSS data to remove any anomalies present in the data. Experimental results show that the proposed approach obtains higher positioning accuracy by extracting maximal discriminate location features and discarding outlying information present in the RSS data.


Author(s):  
J. Liu ◽  
C. Jiang ◽  
Z. Shi

Sufficient signal nodes are mostly required to implement indoor localization in mainstream research. Magnetic field take advantage of high precision, stable and reliability, and the reception of magnetic field signals is reliable and uncomplicated, it could be realized by geomagnetic sensor on smartphone, without external device. After the study of indoor positioning technologies, choose the geomagnetic field data as fingerprints to design an indoor localization system based on smartphone. A localization algorithm that appropriate geomagnetic matching is designed, and present filtering algorithm and algorithm for coordinate conversion. With the implement of plot geomagnetic fingerprints, the indoor positioning of smartphone without depending on external devices can be achieved. Finally, an indoor positioning system which is based on Android platform is successfully designed, through the experiments, proved the capability and effectiveness of indoor localization algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiaohua Li ◽  
Ge Yu

Estimating the indoor position of users in commercial buildings remains a significant challenge to date. Although the WiFi-based indoor localization has been widely explored in many works by employing received signal strength (RSS) patterns as the features, they usually lead to inaccurate results as the RSS could be easily affected by the indoor environmental dynamics. Besides, existing methods are computationally intensive, which have a high time consumption that makes them unsuitable for real-life applications. In order to deal with those issues, we propose to use standardizing waveform tendency (SWT) of RSS for indoor positioning. We show that the proposed SWT is robust to the noise generated by the dynamic environment. We further develop a novel smartphone indoor positioning system by integrating SWT and kernel extreme learning machine (KELM) algorithm. Extensive real-world positioning experiments are conducted to demonstrate the superiority of our proposed model in terms of both positioning accuracy and robustness to environmental changes when comparing with state-of-the-art baselines.


Sign in / Sign up

Export Citation Format

Share Document