scholarly journals Enhancing Personalized Ads Using Interest Category Classification of SNS Users Based on Deep Neural Networks

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 199
Author(s):  
Taekeun Hong ◽  
Jin-A Choi ◽  
Kiho Lim ◽  
Pankoo Kim

The classification and recommendation system for identifying social networking site (SNS) users’ interests plays a critical role in various industries, particularly advertising. Personalized advertisements help brands stand out from the clutter of online advertisements while enhancing relevance to consumers to generate favorable responses. Although most user interest classification studies have focused on textual data, the combined analysis of images and texts on user-generated posts can more precisely predict a consumer’s interests. Therefore, this research classifies SNS users’ interests by utilizing both texts and images. Consumers’ interests were defined using the Curlie directory, and various convolutional neural network (CNN)-based models and recurrent neural network (RNN)-based models were tested for our user interest classification system. In our hybrid neural network (NN) model, CNN-based classification models were used to classify images from users’ SNS postings while RNN-based classification models were used to classify textual data. The results of our extensive experiments show that the classification of users’ interests performed best when using texts and images together, at 96.55%, versus texts only, 41.38%, or images only, 93.1%. Our proposed system provides insights into personalized SNS advertising research and informs marketers on making (1) interest-based recommendations, (2) ranked-order recommendations, and (3) real-time recommendations.

2021 ◽  
Author(s):  
Luke Gundry ◽  
Gareth Kennedy ◽  
Alan Bond ◽  
Jie Zhang

The use of Deep Neural Networks (DNNs) for the classification of electrochemical mechanisms based on training with simulations of the initial cycle of potential have been reported. In this paper,...


2020 ◽  
pp. 104-117
Author(s):  
O.S. Amosov ◽  
◽  
S.G. Amosova ◽  
D.S. Magola ◽  
◽  
...  

The task of multiclass network classification of computer attacks is given. The applicability of deep neural network technology in problem solving has been considered. Deep neural network architecture was chosen based on the strategy of combining a set of convolution and recurrence LSTM layers. Op-timization of neural network parameters based on genetic algorithm is proposed. The presented results of modeling show the possibility of solving the network classification problem in real time.


2020 ◽  
Vol 61 (11) ◽  
pp. 1967-1973
Author(s):  
Takashi Akagi ◽  
Masanori Onishi ◽  
Kanae Masuda ◽  
Ryohei Kuroki ◽  
Kohei Baba ◽  
...  

Abstract Recent rapid progress in deep neural network techniques has allowed recognition and classification of various objects, often exceeding the performance of the human eye. In plant biology and crop sciences, some deep neural network frameworks have been applied mainly for effective and rapid phenotyping. In this study, beyond simple optimizations of phenotyping, we propose an application of deep neural networks to make an image-based internal disorder diagnosis that is hard even for experts, and to visualize the reasons behind each diagnosis to provide biological interpretations. Here, we exemplified classification of calyx-end cracking in persimmon fruit by using five convolutional neural network models with various layer structures and examined potential analytical options involved in the diagnostic qualities. With 3,173 visible RGB images from the fruit apex side, the neural networks successfully made the binary classification of each degree of disorder, with up to 90% accuracy. Furthermore, feature visualizations, such as Grad-CAM and LRP, visualize the regions of the image that contribute to the diagnosis. They suggest that specific patterns of color unevenness, such as in the fruit peripheral area, can be indexes of calyx-end cracking. These results not only provided novel insights into indexes of fruit internal disorders but also proposed the potential applicability of deep neural networks in plant biology.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Keyu Yang ◽  
Yunjun Gao ◽  
Lei Liang ◽  
Song Bian ◽  
Lu Chen ◽  
...  

Text classification is a fundamental task in content analysis. Nowadays, deep learning has demonstrated promising performance in text classification compared with shallow models. However, almost all the existing models do not take advantage of the wisdom of human beings to help text classification. Human beings are more intelligent and capable than machine learning models in terms of understanding and capturing the implicit semantic information from text. In this article, we try to take guidance from human beings to classify text. We propose Crowd-powered learning for Text Classification (CrowdTC for short). We design and post the questions on a crowdsourcing platform to extract keywords in text. Sampling and clustering techniques are utilized to reduce the cost of crowdsourcing. Also, we present an attention-based neural network and a hybrid neural network to incorporate the extracted keywords as human guidance into deep neural networks. Extensive experiments on public datasets confirm that CrowdTC improves the text classification accuracy of neural networks by using the crowd-powered keyword guidance.


2021 ◽  
pp. 35-48
Author(s):  
A.A. Reybandt ◽  
◽  
A.N. Areseniev ◽  
T.G. Maximova ◽  
◽  
...  

The article demonstrates the design and implementation of a data aggregation algorithm for a future recommendation system in the field of personalized nutrition. It was based on theoretical materials on machine learning methods in natural language processing, as well as tutorials on building classification models using the Keras library. A distinctive feature of the classifier implemented within the framework of this project is the fact that it simultaneously accepts images and text data as input to obtain more accurate and balanced predictions. The implementation of the designed data aggregation algorithm for the recommendation system in the field of personalized nutrition is considered in detail. A review was made of the tools and approaches chosen at various stages of aggregation. The metrics for evaluating the predictions of the implemented model for the classification of geographic labels, as well as the analysis of the average sentiment of user reviews are determined and the results are visualized. Predicted geo tags and revealed comment sentiments were added to the main data frame as additional features.


Author(s):  
Yiming Xu ◽  
Diego Klabjan

k-Nearest Neighbors is one of the most fundamental but effective classification models. In this paper, we propose two families of models built on a sequence to sequence model and a memory network model to mimic the k-Nearest Neighbors model, which generate a sequence of labels, a sequence of out-of-sample feature vectors and a final label for classification, and thus they could also function as oversamplers. We also propose 'out-of-core' versions of our models which assume that only a small portion of data can be loaded into memory. Computational experiments show that our models on structured datasets outperform k-Nearest Neighbors, a feed-forward neural network, XGBoost, lightGBM, random forest and a memory network, due to the fact that our models must produce additional output and not just the label. On image and text datasets, the performance of our model is close to many state-of-the-art deep models. As an oversampler on imbalanced datasets, the sequence to sequence kNN model often outperforms Synthetic Minority Over-sampling Technique and Adaptive Synthetic Sampling.


Sign in / Sign up

Export Citation Format

Share Document