scholarly journals Influence of the Bearing Thermal Deformation on Nonlinear Dynamic Characteristics of an Electric Drive Helical Gear System

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 309
Author(s):  
Xianghuan Liu ◽  
Defu Liu ◽  
Xiaolan Hu

Based on the statics and quasi-statics analysis methods, the thermal deformation calculation model of a deep-groove ball bearing was constructed for the helical gear transmission system of a high speed electric drive, and the radial and axial bearing stiffness values of the bearing were calculated under the thermal deformation in this study. The obtained radial and axial stiffness values were introduced into the established dynamics model of helical gear system, and the influence of changed bearing stiffness, resulting from the thermal deformation, on the nonlinear dynamic characteristics of gear pair was analyzed using the Runge–Kutta method. The results show that the axial and radial deformations of bearing occur due to the increase of working speed and temperature, in which the axial stiffness of bearing is improved but the radial stiffness is reduced. The decreasing degree of axial stiffness and the increasing degree of radial stiffness decrease with the gradually increasing working rotational speed. When considering the influence of thermal deformation on the bearing stiffness, the helical gear system will have nonlinear behaviors, such as single periodic, double periodic, and chaotic motion with the change of working speed. Therefore, in order to improve the nonlinear dynamic characteristics of high speed electric drive gear systems, the influence of bearing stiffness change on the dynamic performance of a gear system should be considered in the industrial applications.

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Hui Liu ◽  
Pengfei Yan ◽  
Pu Gao

Abstract The thermal deformation of gears will affect the vibration of the planetary system; this research mainly studied the effect of thermal conditions on planetary systems nonlinear vibration under the thermal equilibrium state. To study the influence of gear temperature on the planetary gear system, a nonlinear dynamic model considering thermal deformation was established. The mathematical expression of the thermal time-varying mesh stiffness (TTVMS) varied with temperature, and the backlash caused by the temperature change was also computed. The influence of temperature on the TTVMS was investigated. The calculation results indicated that the methods used to determine the TTVMS and backlash of gear pairs were effective, and the trends of the change in the nonlinear dynamic characteristics with temperature were obtained. According to the fast Fourier transform (FFT) spectrums and root-mean-square (RMS) analysis, the influence of temperature change on the nonlinear dynamic characteristics of the system was analyzed. When the temperature was lower than 80 °C, the vibration displacement and the supporting shaft load remained unchanged or decreased. Once the temperature was higher than 80 °C, the vibration displacement and load of the system were strengthened.


Author(s):  
Tiancheng Ouyang ◽  
Rui Yang ◽  
Yudong Shen ◽  
Jingxian Chen ◽  
Nan Chen

The calculation of time-varying meshing stiffness caused by the alternate contacting of the gear tooth is an essential prerequisite to obtain real and effective nonlinear dynamic characteristics of the transmission system, so that the significance of which cannot be overemphasized. Accordingly, this work proposes an improved method to get meshing stiffness with taking fillet-foundation and gear rim deflection into consideration. Compared to the traditional potential energy method, the proposed method has more superior accuracy and performance, and its effectiveness has been further verified by the finite element analytical model. After that, an ideal eight degree of freedoms (DOFs) dynamic model of one stage mass-spring-damper involute spur gear, including lateral and torsional motions, is established to study the dynamic characteristics. Due to the complexity of the gear system operating conditions, we also investigate the influence of various parameters including hub bore radius, transmitting load, and rotation speed on dynamic features, especially in heavy-load and high-speed conditions. From the results, it can be concluded that these parameters will play a prominent role in the spur gear pair dynamic behaviors, providing a certain guidance for gear design.


Sign in / Sign up

Export Citation Format

Share Document