scholarly journals Soil Moisture Retrieval in Farmland Areas with Sentinel Multi-Source Data Based on Regression Convolutional Neural Networks

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 877
Author(s):  
Jian Liu ◽  
Youshuan Xu ◽  
Henghui Li ◽  
Jiao Guo

As an important component of the earth ecosystem, soil moisture monitoring is of great significance in the fields of crop growth monitoring, crop yield estimation, variable irrigation, and other related applications. In order to mitigate or eliminate the impacts of sparse vegetation covers in farmland areas, this study combines multi-source remote sensing data from Sentinel-1 radar and Sentinel-2 optical satellites to quantitatively retrieve soil moisture content. Firstly, a traditional Oh model was applied to estimate soil moisture content after removing vegetation influence by a water cloud model. Secondly, support vector regression (SVR) and generalized regression neural network (GRNN) models were used to establish the relationships between various remote sensing features and real soil moisture. Finally, a regression convolutional neural network (CNNR) model is constructed to extract deep-level features of remote sensing data to increase soil moisture retrieval accuracy. In addition, polarimetric decomposition features for real Sentinel-1 PolSAR data are also included in the construction of inversion models. Based on the established soil moisture retrieval models, this study analyzes the influence of each input feature on the inversion accuracy in detail. The experimental results show that the optimal combination of R2 and root mean square error (RMSE) for SVR is 0.7619 and 0.0257 cm3/cm3, respectively. The optimal combination of R2 and RMSE for GRNN is 0.7098 and 0.0264 cm3/cm3, respectively. Especially, the CNNR model with optimal feature combination can generate inversion results with the highest accuracy, whose R2 and RMSE reach up to 0.8947 and 0.0208 cm3/cm3, respectively. Compared to other methods, the proposed algorithm improves the accuracy of soil moisture retrieval from synthetic aperture radar (SAR) and optical data. Furthermore, after adding polarization decomposition features, the R2 of CNNR is raised by 0.1524 and the RMSE of CNNR decreased by 0.0019 cm3/cm3 on average, which means that the addition of polarimetric decomposition features effectively improves the accuracy of soil moisture retrieval results.

2021 ◽  
Vol 13 (2) ◽  
pp. 243
Author(s):  
Amal Chakhar ◽  
David Hernández-López ◽  
Rocío Ballesteros ◽  
Miguel A. Moreno

The availability of an unprecedented amount of open remote sensing data, such as Sentinel-1 and -2 data within the Copernicus program, has boosted the idea of combining the use of optical and radar data to improve the accuracy of agricultural applications such as crop classification. Sentinel-1’s Synthetic Aperture Radar (SAR) provides co- and cross-polarized backscatter, which offers the opportunity to monitor agricultural crops using radar at high spatial and temporal resolution. In this study, we assessed the potential of integrating Sentinel-1 information (VV and VH backscatter and their ratio VH/VV with Sentinel-2A data (NDVI) to perform crop classification and to define which are the most important input data that provide the most accurate classification results. Further, we examined the temporal dynamics of remote sensing data for cereal, horticultural, and industrial crops, perennials, deciduous trees, and legumes. To select the best SAR input feature, we tried two approaches, one based on classification with only SAR features and one based on integrating SAR with optical data. In total, nine scenarios were tested. Furthermore, we evaluated the performance of 22 nonparametric classifiers on which most of these algorithms had not been tested before with SAR data. The results revealed that the best performing scenario was the one integrating VH and VV with normalized difference vegetation index (NDVI) and cubic support vector machine (SVM) (the kernel function of the classifier is cubic) as the classifier with the highest accuracy among all those tested.


2020 ◽  
Vol 12 (5) ◽  
pp. 832 ◽  
Author(s):  
Chunhua Liao ◽  
Jinfei Wang ◽  
Qinghua Xie ◽  
Ayman Al Baz ◽  
Xiaodong Huang ◽  
...  

Annual crop inventory information is important for many agriculture applications and government statistics. The synergistic use of multi-temporal polarimetric synthetic aperture radar (SAR) and available multispectral remote sensing data can reduce the temporal gaps and provide the spectral and polarimetric information of the crops, which is effective for crop classification in areas with frequent cloud interference. The main objectives of this study are to develop a deep learning model to map agricultural areas using multi-temporal full polarimetric SAR and multi-spectral remote sensing data, and to evaluate the influence of different input features on the performance of deep learning methods in crop classification. In this study, a one-dimensional convolutional neural network (Conv1D) was proposed and tested on multi-temporal RADARSAT-2 and VENµS data for crop classification. Compared with the Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) and non-deep learning methods including XGBoost, Random Forest (RF), and Support Vector Machina (SVM), the Conv1D performed the best when the multi-temporal RADARSAT-2 data (Pauli decomposition or coherency matrix) and VENµS multispectral data were fused by the Minimum Noise Fraction (MNF) transformation. The Pauli decomposition and coherency matrix gave similar overall accuracy (OA) for Conv1D when fused with the VENµS data by the MNF transformation (OA = 96.65 ± 1.03% and 96.72 ± 0.77%). The MNF transformation improved the OA and F-score for most classes when Conv1D was used. The results reveal that the coherency matrix has a great potential in crop classification and the MNF transformation of multi-temporal RADARSAT-2 and VENµS data can enhance the performance of Conv1D.


Author(s):  
H. Zhu ◽  
H. L. Zhao ◽  
Y. Z. Jiang ◽  
W. B. Zang

Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data caused by the research units of pixels, and doesn’t involve compromises in the spatial scale and simulating precision like the grid simulation. When the application needs are met, the production efficiency of products can also be improved at a certain degree.


Sign in / Sign up

Export Citation Format

Share Document