scholarly journals Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1366
Author(s):  
Jaehoon Kim ◽  
Junghyo Yoon ◽  
Jae-Yeong Byun ◽  
Hyunho Kim ◽  
Sewoon Han ◽  
...  

Blood plasma is a source of biomarkers in blood and a simple, fast, and easy extraction method is highly required for point-of-care testing (POCT) applications. This paper proposes a membrane filter integrated microfluidic device to extract blood plasma from whole blood, without any external instrumentation. A commercially available membrane filter was integrated with a newly designed dual-cover microfluidic device to avoid leakage of the extracted plasma and remaining blood cells. Nano-interstices installed on both sides of the microfluidic channels actively draw the extracted plasma from the membrane. The developed device successfully supplied 20 μL of extracted plasma with a high extraction yield (~45%) in 16 min.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Jun Zhang ◽  
Sheng Yan ◽  
Dan Yuan ◽  
Gursel Alici ◽  
Nam-Trung Nguyen ◽  
...  

Plasma is a host of numerous analytes such as proteins, metabolites, circulating nucleic acids (CNAs), and pathogens, and it contains massive information about the functioning of the whole body, which is of great importance for the clinical diagnosis. Plasma needs to be completely cell-free for effective detection of these analytes. The key process of plasma extraction is to eliminate the contamination from blood cells. Centrifugation, a golden standard method for blood separation, is generally lab-intensive, time consuming, and even dangerous to some extent, and needs to be operated by well-trained staffs. Membrane filtration can filter cells very effectively according to its pore size, but it is prone to clogging by dense particle concentration and suffers from limited capacity of filtration. Frequent rinse is lab-intensive and undesirable. In this work, we proposed and fabricated an integrated microfluidic device that combined particle inertial focusing and membrane filter for high efficient blood plasma separation. The integrated microfluidic device was evaluated by the diluted (×1/10, ×1/20) whole blood, and the quality of the extracted blood plasma was measured and compared with that from the standard centrifugation. We found that the quality of the extracted blood plasma from the proposed device can be equivalent to that from the standard centrifugation. This study demonstrates a significant progress toward the practical application of inertial microfluidics with membrane filter for high-throughput and highly efficient blood plasma extraction.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 543 ◽  
Author(s):  
Anyang Wang ◽  
Domin Koh ◽  
Philip Schneider ◽  
Evan Breloff ◽  
Kwang W. Oh

In this paper, a simple syringe‑assisted pumping method is introduced. The proposed fluidic micropumping system can be used instead of a conventional pumping system which tends to be large, bulky, and expensive. The micropump was designed separately from the microfluidic channels and directly bonded to the outlet of the microfluidic device. The pump components were composed of a dead‑end channel which was surrounded by a microchamber. A syringe was then connected to the pump structure by a short tube, and the syringe plunger was manually pulled out to generate low pressure inside the microchamber. Once the sample was loaded in the inlet, air inside the channel diffused into the microchamber through the PDMS (polydimethylsiloxane) wall, acting as a dragging force and pulling the sample toward the outlet. A constant flow with a rate that ranged from 0.8 nl · s − 1 to 7.5 nl · s − 1 was achieved as a function of the geometry of the pump, i.e., the PDMS wall thickness and the diffusion area. As a proof-of-concept, microfluidic mixing was demonstrated without backflow. This method enables pumping for point-of-care testing (POCT) with greater flexibility in hand-held PDMS microfluidic devices.


Author(s):  
Jun Zhang ◽  
Sheng Yan ◽  
Dan Yuan ◽  
Gursel Alici ◽  
Nam-trung Nguyen ◽  
...  

Plasma is a host of various analytes such as proteins, metabolites, circulating nucleic acids (CNAs), pathogens. The key process of plasma extraction is to eliminate the contamination from blood cells. Conventional methods, such as centrifugation and membrane filtration, are generally lab-intensive, time consuming and even dangerous. In this study, we report an integrated microfluidic device that combines inertial microfluidics and membrane filter. The integrated microfluidic device was evaluated by the diluted (x1/10, x1/20) whole blood, and the quality of the extracted blood plasma was tested. It was found that quality of extracted blood plasma from integrated device was equivalent to that obtained by the centrifugation. This study demonstrates a significant progress towards the practical application of inertial microfluidics with membrane filter for high-throughput and high efficient blood plasma extraction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Gaikwad ◽  
P. R. Thangaraj ◽  
A. K. Sen

AbstractThe levels of hydrogen peroxide ($${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 ) in human blood is of great relevance as it has emerged as an important signalling molecule in a variety of disease states. Fast and reliable measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the blood, however, continues to remain a challenge. Herein we report an automated method employing a microfluidic device for direct and rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in human blood based on laser-induced fluorescence measurement. Our study delineates the critical factors that affect measurement accuracy—we found blood cells and soluble proteins significantly alter the native $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 levels in the time interval between sample withdrawal and detection. We show that separation of blood cells and subsequent dilution of the plasma with a buffer at a ratio of 1:6 inhibits the above effect, leading to reliable measurements. We demonstrate rapid measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in plasma in the concentration range of 0–49 µM, offering a limit of detection of 0.05 µM, a sensitivity of 0.60 µM−1, and detection time of 15 min; the device is amenable to the real-time measurement of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in the patient’s blood. Using the linear correlation obtained with known quantities of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 , the endogenous $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 concentration in the blood of healthy individuals is found to be in the range of 0.8–6 µM. The availability of this device at the point of care will have relevance in understanding the role of $${\mathrm{H}}_{2}{\mathrm{O}}_{2}$$ H 2 O 2 in health and disease.


2015 ◽  
Vol 7 (2) ◽  
pp. 025007 ◽  
Author(s):  
Hojjat Madadi ◽  
Jasmina Casals-Terré ◽  
Mahdi Mohammadi

Lab on a Chip ◽  
2018 ◽  
Vol 18 (6) ◽  
pp. 915-922 ◽  
Author(s):  
Yonghun Lee ◽  
Dong-Min Kim ◽  
Zhenglin Li ◽  
Dong-Eun Kim ◽  
Sung-Jin Kim

This paper presents pulsatile blood-plasma filtration and on-chip amplification of cell-free DNA, which obviates the need for any dynamic external controllers for point-of-care testing.


2020 ◽  
Author(s):  
Ravindra Gaikwad ◽  
Paul Thangaraj ◽  
Ashis Sen

Abstract The levels of hydrogen peroxide (H2O2) in human blood is of great relevance as it has emerged as an important signalling molecule in a variety of disease states. Fast and reliable measurement of H2O2 levels in the blood, however, continues to remain a challenge. Herein we report an automated method employing a microfluidic device for direct and rapid measurement of H2O2 in human blood based on laser-induced fluorescence measurement. Our study delineates the critical factors that affect measurement accuracy – we found blood cells and soluble proteins significantly alter the native H2O2 levels in the time interval between sample withdrawal and detection. We show that separation of blood cells and subsequent dilution of the plasma with a buffer at a ratio of 1:6 inhibits the above effect, leading to reliable measurements. We demonstrate rapid measurement of in plasma in the concentration range of 0 – 49 µM, offering a limit of detection of 0.05 µM, a sensitivity of 0.60 µM-1, and detection time of 15 min; the device is amenable to the real-time measurement of H2O2 in the patient’s blood. Using the linear correlation obtained with known quantities of H2O2, the endogenous H2O2 concentration in the blood of healthy individuals is found to be in the range 2 – 6 µM. The availability of this device at the point of care will have relevance in understanding the role of H2O2 in health and disease.


Biosensors ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 209
Author(s):  
Yung-Tsan Chen ◽  
Ya-Chu Lee ◽  
Yao-Hsuan Lai ◽  
Jin-Chun Lim ◽  
Nien-Tsu Huang ◽  
...  

This article reviews optical biosensors and their integration with microfluidic channels. The integrated biosensors have the advantages of higher accuracy and sensitivity because they can simultaneously monitor two or more parameters. They can further incorporate many functionalities such as electrical control and signal readout monolithically in a single semiconductor chip, making them ideal candidates for point-of-care testing. In this article, we discuss the applications by specifically looking into point-of-care testing (POCT) using integrated optical sensors. The requirement and future perspective of integrated optical biosensors for POC is addressed.


Sign in / Sign up

Export Citation Format

Share Document