High Throughput Cell-Free Extraction of Plasma by an Integrated Microfluidic Device Combining Inertial Microfluidics and Membrane

Author(s):  
Jun Zhang ◽  
Sheng Yan ◽  
Dan Yuan ◽  
Gursel Alici ◽  
Nam-trung Nguyen ◽  
...  

Plasma is a host of various analytes such as proteins, metabolites, circulating nucleic acids (CNAs), pathogens. The key process of plasma extraction is to eliminate the contamination from blood cells. Conventional methods, such as centrifugation and membrane filtration, are generally lab-intensive, time consuming and even dangerous. In this study, we report an integrated microfluidic device that combines inertial microfluidics and membrane filter. The integrated microfluidic device was evaluated by the diluted (x1/10, x1/20) whole blood, and the quality of the extracted blood plasma was tested. It was found that quality of extracted blood plasma from integrated device was equivalent to that obtained by the centrifugation. This study demonstrates a significant progress towards the practical application of inertial microfluidics with membrane filter for high-throughput and high efficient blood plasma extraction.

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Jun Zhang ◽  
Sheng Yan ◽  
Dan Yuan ◽  
Gursel Alici ◽  
Nam-Trung Nguyen ◽  
...  

Plasma is a host of numerous analytes such as proteins, metabolites, circulating nucleic acids (CNAs), and pathogens, and it contains massive information about the functioning of the whole body, which is of great importance for the clinical diagnosis. Plasma needs to be completely cell-free for effective detection of these analytes. The key process of plasma extraction is to eliminate the contamination from blood cells. Centrifugation, a golden standard method for blood separation, is generally lab-intensive, time consuming, and even dangerous to some extent, and needs to be operated by well-trained staffs. Membrane filtration can filter cells very effectively according to its pore size, but it is prone to clogging by dense particle concentration and suffers from limited capacity of filtration. Frequent rinse is lab-intensive and undesirable. In this work, we proposed and fabricated an integrated microfluidic device that combined particle inertial focusing and membrane filter for high efficient blood plasma separation. The integrated microfluidic device was evaluated by the diluted (×1/10, ×1/20) whole blood, and the quality of the extracted blood plasma was measured and compared with that from the standard centrifugation. We found that the quality of the extracted blood plasma from the proposed device can be equivalent to that from the standard centrifugation. This study demonstrates a significant progress toward the practical application of inertial microfluidics with membrane filter for high-throughput and highly efficient blood plasma extraction.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1366
Author(s):  
Jaehoon Kim ◽  
Junghyo Yoon ◽  
Jae-Yeong Byun ◽  
Hyunho Kim ◽  
Sewoon Han ◽  
...  

Blood plasma is a source of biomarkers in blood and a simple, fast, and easy extraction method is highly required for point-of-care testing (POCT) applications. This paper proposes a membrane filter integrated microfluidic device to extract blood plasma from whole blood, without any external instrumentation. A commercially available membrane filter was integrated with a newly designed dual-cover microfluidic device to avoid leakage of the extracted plasma and remaining blood cells. Nano-interstices installed on both sides of the microfluidic channels actively draw the extracted plasma from the membrane. The developed device successfully supplied 20 μL of extracted plasma with a high extraction yield (~45%) in 16 min.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (14) ◽  
pp. 2525-2538 ◽  
Author(s):  
Shaofei Shen ◽  
Chao Ma ◽  
Lei Zhao ◽  
Yaolei Wang ◽  
Jian-Chun Wang ◽  
...  

We present a multistage microfluidic device for continuous label-free separation of rare cells using a combination of inertial microfluidics and steric hindrance.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Yin-Ting Yeh ◽  
Zhong Lin ◽  
Si-Yang Zheng ◽  
Mauricio Terrones

2015 ◽  
Vol 22 (10) ◽  
pp. 2447-2454 ◽  
Author(s):  
Alireza Shamsi ◽  
Amir Shamloo ◽  
Negar Mohammadaliha ◽  
Hassan Hajghassem ◽  
Jalil Fallah Mehrabadi ◽  
...  

2009 ◽  
Vol 8 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Marta Sofia Valente ◽  
Paulo Pedro ◽  
M. Carmen Alonso ◽  
Juan J. Borrego ◽  
Lídia Dionísio

Monitoring the microbiological quality of water used for recreational activities is very important to human public health. Although the sanitary quality of recreational marine waters could be evaluated by standard methods, they are time-consuming and need confirmation. For these reasons, faster and more sensitive methods, such as the defined substrate-based technology, have been developed. In the present work, we have compared the standard method of membrane filtration using Tergitol-TTC agar for total coliforms and Escherichia coli, and Slanetz and Bartley agar for enterococci, and the IDEXX defined substrate technology for these faecal pollution indicators to determine the microbiological quality of natural recreational waters. ISO 17994:2004 standard was used to compare these methods. The IDEXX for total coliforms and E. coli, Colilert®, showed higher values than those obtained by the standard method. Enterolert® test, for the enumeration of enterococci, showed lower values when compared with the standard method. It may be concluded that more studies to evaluate the precision and accuracy of the rapid tests are required in order to apply them for routine monitoring of marine and freshwater recreational bathing areas. The main advantages of these methods are that they are more specific, feasible and simpler than the standard methodology.


Lab on a Chip ◽  
2022 ◽  
Author(s):  
Nan Xiang ◽  
Zhonghua Ni

On-chip concentration of rare malignant tumor cells (MTCs) in malignant pleural effusions (MPEs) with a large volume is challenging. Previous microfluidic concentrators suffer from a low concentration factor (CF) and...


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


Sign in / Sign up

Export Citation Format

Share Document