scholarly journals A Blockchain-Based Trusted Edge Platform in Edge Computing Environment

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2126
Author(s):  
Jinnan Zhang ◽  
Changqi Lu ◽  
Gang Cheng ◽  
Teng Guo ◽  
Jian Kang ◽  
...  

Edge computing is a product of the evolution of IoT and the development of cloud computing technology, providing computing, storage, network, and other infrastructure close to users. Compared with the centralized deployment model of traditional cloud computing, edge computing solves the problems of extended communication time and high convergence traffic, providing better support for low latency and high bandwidth services. With the increasing amount of data generated by users and devices in IoT, security and privacy issues in the edge computing environment have become concerns. Blockchain, a security technology developed rapidly in recent years, has been adopted by many industries, such as finance and insurance. With the edge computing capability, deploying blockchain platforms/applications on edge computing platforms can provide security services for network edge environments. Although there are already solutions for integrating edge computing with blockchain in many IoT application scenarios, they slightly lack scalability, portability, and heterogeneous data processing. In this paper, we propose a trusted edge platform to integrate the edge computing framework and blockchain network for building an edge security environment. The proposed platform aims to preserve the data privacy of the edge computing client. The design based on the microservice architecture makes the platform lighter. To improve the portability of the platform, we introduce the Edgex Foundry framework and design an edge application module on the platform to improve the business capability of Edgex. Simultaneously, we designed a series of well-defined security authentication microservices. These microservices use the Hyperledger Fabric blockchain network to build a reliable security mechanism in the edge environment. Finally, we build an edge computing network using different hardware devices and deploy the trusted edge platform on multiple network nodes. The usability of the proposed platform is demonstrated by testing the round-trip time (RTT) of several important workflows. The experimental results demonstrate that the platform can meet the availability requirements in real-world usage scenarios.

Author(s):  
Shantanu Pal

In a cloud ecosystem, most of the data and software that users use reside on the remote server(s), which brings some new challenges for the system, especially security and privacy. At present, these security threats and attacks are the greatest concern for the service providers towards delivering a more secure cloud infrastructure. One of the major concerns is data security, implemented by the most effective means possible and the protection of stored data from unauthorized users and hackers. When considering these security issues, trust is one of the most important means to improve the system’s security and enable interoperability of current heterogeneous cloud computing platforms. The objective of this chapter is to discuss and understand the basic security and privacy challenges of a cloud computing environment as the security of cloud computing is the greatest challenge for delivering a safer cloud environment for both the service providers and the service customers. With this in mind, this chapter will introduce the risks and possible attacks in a cloud computing environment. The major goal is to specify the security risks and attacks and consider trust of cloud service users for delivering a safer and innovation business model.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Changqing Gong ◽  
Mengfei Li ◽  
Liang Zhao ◽  
Zhenzhou Guo ◽  
Guangjie Han

With the rapid development of the 5G network and Internet of Things (IoT), lots of mobile and IoT devices generate massive amounts of multisource heterogeneous data. Effective processing of such data becomes an urgent problem. However, traditional centralised models of cloud computing are challenging to process multisource heterogeneous data effectively. Mobile edge computing (MEC) emerges as a new technology to optimise applications or cloud computing systems. However, the features of MEC such as content perception, real-time computing, and parallel processing make the data security and privacy issues that exist in the cloud computing environment more prominent. Protecting sensitive data through traditional encryption is a very secure method, but this will make it impossible for the MEC to calculate the encrypted data. The fully homomorphic encryption (FHE) overcomes this limitation. FHE can be used to compute ciphertext directly. Therefore, we propose a ciphertext arithmetic operation that implements data with integer homomorphic encryption to ensure data privacy and computability. Our scheme refers to the integer operation rules of complement, addition, subtraction, multiplication, and division. First, we use Boolean polynomials (BP) of containing logical AND, XOR operations to represent the rulers. Second, we convert the BP into homomorphic polynomials (HP) to perform ciphertext operations. Then, we optimise our scheme. We divide the ciphertext vector of integer encryption into subvectors of length 2 and increase the length of private key of FHE to support the 3-multiplication level additional. We test our optimised scheme in DGHV and CMNT. In the number of ciphertext refreshes, the optimised scheme is reduced by 2/3 compared to the original scheme, and the time overhead of our scheme is reduced by 1/3. We also examine our scheme in CNT of without bootstrapping. The time overhead of optimised scheme over DGHV and CMNT is close to the original scheme over CNT.


Cloud computing is the theoretical basis for future computing. All the global frameworks are now looking up to architecture which is purely based on cloud. Being the core of such a large web of network, it is important to consider the security aspects in a cloud based computing environment. This has resulted in a new research trend on the security issues of cloud. Cloud is a popular paradigm with extreme abilities and benefits for trending ICT environment. On the other end the major concern came in terms of security and privacy while adopting the cloud technology. This article is an effort to cover the challenges in fields like storage, virtualization and communication in cloud .Also it is a try to elaborate relevance of current cryptographic approach in order to increase security of cloud in ICT.


2015 ◽  
pp. 1561-1584
Author(s):  
Hassan Takabi ◽  
Saman Taghavi Zargar ◽  
James B. D. Joshi

Mobile cloud computing has grown out of two hot technology trends, mobility and cloud. The emergence of cloud computing and its extension into the mobile domain creates the potential for a global, interconnected mobile cloud computing environment that will allow the entire mobile ecosystem to enrich their services across multiple networks. We can utilize significant optimization and increased operating power offered by cloud computing to enable seamless and transparent use of cloud resources to extend the capability of resource constrained mobile devices. However, in order to realize mobile cloud computing, we need to develop mechanisms to achieve interoperability among heterogeneous and distributed devices. We need solutions to discover best available resources in the cloud servers based on the user demands and approaches to deliver desired resources and services efficiently and in a timely fashion to the mobile terminals. Furthermore, while mobile cloud computing has tremendous potential to enable the mobile terminals to have access to powerful and reliable computing resources anywhere and anytime, we must consider several issues including privacy and security, and reliability in realizing mobile cloud computing. In this chapter, the authors first explore the architectural components required to realize a mobile cloud computing infrastructure. They then discuss mobile cloud computing features with their unique privacy and security implications. They present unique issues of mobile cloud computing that exacerbate privacy and security challenges. They also discuss various approaches to address these challenges and explore the future work needed to provide a trustworthy mobile cloud computing environment.


2019 ◽  
Vol 27 (5) ◽  
pp. 601-620
Author(s):  
Lamya Abdullah ◽  
Juan Quintero

Purpose The purpose of this study is to propose an approach to avoid having to trust a single entity in cloud-based applications. In cloud computing, data processing is delegated to a remote party for efficiency and flexibility reasons. A practical user requirement usually is data privacy; hence, the confidentiality and integrity of data processing needs to be protected. In the common scenarios of cloud computing today, this can only be achieved by assuming that the remote party does not in any form act maliciously. Design/methodology/approach An approach that avoids having to trust a single entity is proposed. This approach is based on two concepts: the technical abstraction of sealed computation, i.e. a technical mechanism to confine a privacy-aware processing of data within a tamper-proof hardware container, and the role of an auditing party that itself cannot add functionality to the system but is able to check whether the system (including the mechanism for sealed computation) works as expected. Findings Discussion and analysis of the abstract, technical and procedural requirements of these concepts and how they can be applied in practice are explained. Originality/value A preliminary version of this paper was published in the proceedings of the second International Workshop on SECurity and Privacy Requirements Engineering (SECPRE, 2018).


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Maria-Dolores Cano ◽  
Antonio Cañavate-Sanchez

The disclosure of personal and private information is one of the main challenges of the Internet of Medical Things (IoMT). Most IoMT-based services, applications, and platforms follow a common architecture where wearables or other medical devices capture data that are forwarded to the cloud. In this scenario, edge computing brings new opportunities to enhance the operation of IoMT. However, despite the benefits, the inherent characteristics of edge computing require countermeasures to address the security and privacy issues that IoMT gives rise to. The restrictions of IoT devices in terms of battery, memory, hardware resources, or computing capabilities have led to a common agreement for the use of elliptic curve cryptography (ECC) with hardware or software implementations. As an example, the elliptic curve digital signature algorithm (ECDSA) is widely used by IoT devices to compute digital signatures. On the other hand, it is well known that dual signature has been an effective method to provide consumer privacy in classic e-commerce services. This article joins both approaches. It presents a novel solution to enhanced security and the preservation of data privacy in communications between IoMT devices and the cloud via edge computing devices. While data source anonymity is achieved from the cloud perspective, integrity and origin authentication of the collected data is also provided. In addition, computational requirements and complexity are kept to a minimum.


Sign in / Sign up

Export Citation Format

Share Document