scholarly journals Upper Limb Rehabilitation Tools in Virtual Reality Based on Haptic and 3D Spatial Recognition Analysis: A Pilot Study

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2790
Author(s):  
Eun Bin Kim ◽  
Songee Kim ◽  
Onseok Lee

With aging, cerebrovascular diseases can occur more often. Stroke cases involve hemiplegia, which causes difficulties in performing activities of daily living. Existing rehabilitation treatments are based on the subjective evaluation of the therapist as the need for non-contact care arises; it is necessary to develop a system that can self-rehabilitate and offer objective analysis. Therefore, we developed rehabilitation tools that enable self-rehabilitation exercises in a virtual space based on haptics. Thirty adults without neurological damage were trained five times in a virtual environment, and the time, number of collisions, and coordinates were digitized and stored in real time. An analysis of variance (ANOVA) of the time and distance similarity changes revealed that as the number of rounds increased, no changes or increases occurred (p ≥ 0.05), and the collisions and paths were stable as the training progressed (p < 0.05). ANOVA showed a high correlation (0.90) with a decrease in the number of crashes and time required. It was meaningful to users when performing rehabilitation training more than four times and significantly impacted the analysis. This study analyzed the upper limb and cognitive rehabilitation of able-boded people in three-dimensional space in a virtual environment; the performance difficulty could be controlled through variations in rehabilitation models.

Author(s):  
Aliakbar Alamdari ◽  
Venkat Krovi

This paper examines the design, analysis and control of a novel hybrid articulated-cable parallel platform for upper limb rehabilitation in three dimensional space. The proposed lightweight, low-cost, modular reconfigurable parallel-architecture robotic device is comprised of five cables and a single linear actuator which connects a six degrees-of-freedom moving platform to a fixed base. This novel design provides an attractive architecture for implementation of a home-based rehabilitation device as an alternative to bulky and expensive serial robots. The manuscript first examines the kinematic analysis prior to developing the dynamic equations via the Newton-Euler formulation. Subsequently, different spatial motion trajectories are prescribed for rehabilitation of subjects with arm disabilities. A low-level trajectory tracking controller is developed to achieve the desired trajectory performance while ensuing that the unidirectional tensile forces in the cables are maintained. This is now evaluated via a simulation case-study and the development of a physical testbed is underway.


1996 ◽  
Vol 2 (3) ◽  
pp. 1-14
Author(s):  
Jing-Jing Fang ◽  
Douglas E.R. Clark ◽  
John E. L. Simmons

The authors built a pseudo-immersive three-dimensional computer generated virtual environment (VE) as a shell for research in detailed collision detection. The purpose of the virtual world construction described in this paper is to handle engineering applications such as the mechanical assembly and disassembly of complex systems. A virtual space ball is attached to the VE in order to control the motion of virtual objects in that environment. This software interface simulates a real three-dimensional space ball device. The contribution of the pseudo-immersive system removes the absolute necessity for expensive Virtual Reality equipment and software for research work on virtual reality.


2019 ◽  
Vol 15 ◽  
pp. 100155 ◽  
Author(s):  
Luigi Iuppariello ◽  
Giovanni D'addio ◽  
Bernardo Lanzillo ◽  
Piero Balbi ◽  
Emilio Andreozzi ◽  
...  

Author(s):  
Evagoras G. Xydas ◽  
Loucas S. Louca

In this work, a nine-hole peg-board test (NHPT) arrangement is implemented in a Virtual Environment with the use of a Haptic Interface that has the form of a small robotic arm. The Haptic NHPT is used as a mean for investigating the validity of a quantitative metric, which is based on smoothness maximization, as a possible assessment parameter for three dimensional reaching tasks. More specifically this study refers to the assessment of people with multiple sclerosis. The basic metric is developed by combining a neurophysical concept, which suggests that the three dimensional trajectories are piecewise planar, with the minimum jerk model (MJM) which in turn maximizes the smoothness along a predefined path. A total number of sixteen persons participated in the study. From these, nine were healthy young adults and seven were people with MS of various ages and at different stages of disease progress. All participants performed the exercise three times, of which only the second and third were used in the analyses. The results showed that the employed procedure was successful for developing a motion analysis metric for the smoothness in three dimensional trajectories. Also, a clear and traceable difference in performance appeared between the two groups, by using the developed assessment metric.


Author(s):  
Mikhail Mikhaylyuk ◽  
Andrey Maltsev ◽  
Evgeny Strashnov

This paper presents original solutions for creation of training complex learning cosmonauts to control a space jet pack on purpose self-rescue when emergency happens. An approach is proposed in which training is carried out in a virtual environment using virtual reality gloves and headset. The idea is that control of virtual space jet pack model is performed by interaction of virtual hands, copying movements of cosmonaut's hands, with three-dimensional model of jet pack's control panel. To implement the training complex, methods and approaches were developed for movement synchronization simulation of virtual and real hands, as well as simulation of jet pack's control panel and thrusters. Approbation of proposed methods and approaches was carried out as part of our virtual environment system VirSim developed at the SRISA RAS. Results obtained in the paper can be used to create training complex for learning cosmonauts to rescue when they accidentally separate from the International Space Station.


2006 ◽  
Vol 2006 ◽  
pp. 1-13 ◽  
Author(s):  
Karla de Souza Torres ◽  
A. F. B. A. Prado

We analyze the problem of the orbital control of an Earth's satellite using the gravity of the Moon. The main objective is to study a technique to decrease the fuel consumption of a plane change maneuver to be performed in a satellite that is in orbit around the Earth. The main idea of this approach is to send the satellite to the Moon using a single-impulsive maneuver, use the gravity field of the Moon to make the desired plane change of the trajectory, and then return the satellite to its nominal semimajor axis and eccentricity using a bi-impulsive Hohmann-type maneuver. The satellite is assumed to start in a Keplerian orbit in the plane of the lunar orbit around the Earth and the goal is to put it in a similar orbit that differs from the initial orbit only by the inclination. A description of the close-approach maneuver is made in the three-dimensional space. Analytical equations based on the patched conics approach are used to calculate the variation in velocity, angular momentum, energy, and inclination of the satellite. Then, several simulations are made to evaluate the savings involved. The time required by those transfers is also calculated and shown.


2021 ◽  
Vol 11 (20) ◽  
pp. 9500
Author(s):  
Monserrat Ríos-Hernández ◽  
Juan Manuel Jacinto-Villegas ◽  
Otniel Portillo-Rodríguez ◽  
Adriana Herlinda Vilchis-González

Virtual environments (VEs) and haptic devices increase patients’ motivation. Furthermore, they observe their performance during rehabilitation. However, some of these technologies present disadvantages because they do not consider therapists’ needs and experience. This research presents the development and usability evaluation of an upper limb rehabilitation system based on a user-centered design approach for patients with moderate or mild stroke that can perform active rehabilitation. The system consists of a virtual environment with four virtual scenarios and a developed haptic device with vibrotactile feedback, and it can be visualized using a monitor or a Head-Mounted Display (HMD). Two evaluations were carried out; in the first one, five therapists evaluated the system’s usability using a monitor through the System Usability Scale, the user experience with the AttrakDiff questionnaire, and the functionality with customized items. As a result of these tests, improvements were made to the system. The second evaluation was carried out by ten volunteers who evaluated the usability, user experience, and performance with a monitor and HMD. A comparison of the therapist and volunteer scores has shown an increase in the usability evaluation (from 78 to >85), the hedonic score rose from 0.6 to 2.23, the pragmatic qualities from 1.25 to 2.20, and the attractiveness from 1.3 to 2.95. Additionally, the haptic device and the VE showed no relevant difference between their performance when using a monitor or HMD. The results show that the proposed system has the characteristics to be a helpful tool for therapists and upper limb rehabilitation.


1998 ◽  
Vol 7 (5) ◽  
pp. 478-493 ◽  
Author(s):  
Doug A. Bowman ◽  
Larry F. Hodges ◽  
Jay Bolter

We present a virtual environment application that allows users to access embedded information within an immersive virtual space. Due to the richness and complexity of this environment, efficient and easy-to-use interaction techniques are a crucial requirement. The “Virtual Venue” seamlessly combines both twoand three-dimensional interaction techniques into a single system and utilizes previously reported as well as novel techniques that fit the task of information access. We present tools for user control of the system, travel through the environment, and information retrieval, as well as authoring tools for the creation of information-rich virtual environments. A usability study and its results are also presented and discussed. The study indicates that the use of abstract information that is tightly coupled to the virtual environment can be quite successful in enhancing the relevance of both the environment and the information. Results also show that the set of well-constrained interaction techniques presented here are usable and efficient for information retrieval.


Author(s):  
Chris Christou

Virtual Reality is implemented by a combination of technologies that are used in order to visualize and provide interaction with a virtual environment. These environments often depict three-dimensional space which may be realistic or imaginary, macroscopic or microscopic and based on realistic physical laws of dynamics, or on imaginary dynamics. The multitude of scenarios that VR may be used to depict make it broadly applicable to the many areas in education. A key feature of VR is that it allows multi-sensory interaction with the space being visualized. Here we look at how this combination of multi-sensory visualization and interactivity make VR ideally suited for effective learning and try to explain this effectiveness in terms of the advantages afforded by active learning through experiences. We also consider some of the applications of VR in education and also some of its drawbacks.


2018 ◽  
pp. 1267-1287
Author(s):  
Wei Wei

This chapter mainly introduced the virtual reality as many benefits of robots involved in disability rehabilitation. According to the vision feedback and force feedback, the therapist can adjust his operation. Virtual reality technology can provide repeated practice, performance feedback and motivation techniques for rehabilitation training. Patients can learn motor skills in a virtual environment, and then transfer the skills to the real world. It is hopeful to achieve satisfactory outcome in the field of rehabilitation in the future. VR is mainly used for the upper-limb rehabilitation robot system in this article. The objective of robotic systems for disability rehabilitation are explored to divide the whole rehabilitation training process into three parts, earliest rehabilitation training, medium-term rehabilitation training and late rehabilitation training, respectively. Accordingly, brain-computer training modes, the master-slave training modes and the electromyogram (EMG) signals training modes are developed to be used in rehabilitation training to help stroke patients with hemiplegia to restore the motor function of upper limb. Aimed at the rehabilitation goal, three generations of VR rehabilitation system has designed. The first generation of VR rehabilitation system includes haptic device (PHANTOM Omni), an advanced inertial sensor (MTx) and a computer. The impaired hand grip the stylus of haptic device, the intact hand can control the impaired hand's motion based on the virtual reality scene. The second generation of the VR rehabilitation system is the exoskeleton robots structure. Two virtual upper limbs are portrayed in the virtual environment, simulated the impaired hand and the intact hand, respectively. The third generation is a novel VR-based upper limb rehabilitation robot system. In the system, the realization of virtual reality environment is implemented, which can potentially motivate patients to exercise for longer periods of time. Not only virtual images but also position and force information are sent to the doctors. The development of this system can be a promising approach for further research in the field of tele-rehabilitation science.


Sign in / Sign up

Export Citation Format

Share Document