scholarly journals Image Motion Extraction of Structures Using Computer Vision Techniques: A Comparative Study

Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6248
Author(s):  
Jau-Yu Chou ◽  
Chia-Ming Chang

Vibrational measurements play an important role for structural health monitoring, e.g., modal extraction and damage diagnosis. Moreover, conditions of civil structures can be mostly assessed by displacement responses. However, installing displacement transducers between the ground and floors in real-world buildings is unrealistic due to lack of reference points and structural scales and complexity. Alternatively, structural displacements can be acquired using computer vision-based motion extraction techniques. These extracted motions not only provide vibrational responses but are also useful for identifying the modal properties. In this study, three methods, including the optical flow with the Lucas–Kanade method, the digital image correlation (DIC) with bilinear interpolation, and the in-plane phase-based motion magnification using the Riesz pyramid, are introduced and experimentally verified using a four-story steel-frame building with a commercially available camera. First, the three displacement acquiring methods are introduced in detail. Next, the displacements are experimentally obtained from these methods and compared to those sensed from linear variable displacement transducers. Moreover, these displacement responses are converted into modal properties by system identification. As seen in the experimental results, the DIC method has the lowest average root mean squared error (RMSE) of 1.2371 mm among these three methods. Although the phase-based motion magnification method has a larger RMSE of 1.4132 mm due to variations in edge detection, this method is capable of providing full-field mode shapes over the building.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5664
Author(s):  
Jiqiao Zhang ◽  
Zhihua Wu ◽  
Gongfa Chen ◽  
Qiang Liang

This paper proposes a differential filtering method for the identification of modal parameters of bridges from unmanned aerial vehicle (UAV) measurement. The determination of the modal parameters of bridges is a key issue in bridge damage detection. Accelerometers and fixed cameras have disadvantages of deployment difficulty. Hence, the actual displacement of a bridge may be obtained by using the digital image correlation (DIC) technology from the images collected by a UAV. As drone movement introduces false displacement into the collected images, the homography transformation is commonly used to achieve geometric correction of the images and obtain the true displacement of the bridge. The homography transformation is not always applicable as it is based on at least four static reference points on the plane of target points. The proposed differential filtering method does not request any reference points and will greatly accelerate the identification of the modal parameters. The displacement of the points of interest is tracked by the DIC technology, and the obtained time history curves are processed by differential filtering. The filtered signals are input into the modal analysis system, and the basic modal parameters of the bridge model are obtained by the operational modal analysis (OMA) method. In this paper, the power spectral density (PSD) is used to identify the natural frequencies; the mode shapes are determined by the ratio of the PSD transmissibility (PSDT). The identification results of three types of signals are compared: UAV measurement with differential filtering, UAV measurement with homography transformation, and accelerometer-based measurement. It is found that the natural frequencies recognized by these three methods are almost the same. This paper demonstrates the feasibility of UAV-differential filtering method in obtaining the bridge modal parameters; the problems and challenges in UAV measurement are also discussed.


Author(s):  
Wenbing Chen ◽  
Banfu Yan ◽  
Jingbo Liao ◽  
Lei Luo ◽  
You Dong

The mode shape-aided method provides a simple and effective way for cable force determination, which, however, requires accurate parameter identification of the cable structure. This paper proposes a phase-based video motion magnification to process the image sequences of a cable. Digital image correlations were engaged to measure the dynamic displacement–time history, through tracking the surface characteristic features of the cable. Thereafter, a frequency–domain decomposition technique was applied to extract the natural frequency and mode shape of the cable from the displacement–time history measurements. The identified cable mode shapes, along with a tensioned pinned-pinned cable model, were used to estimate the cable force. The accuracy of the proposed methodology was subsequently verified through laboratory testing on an inclined cable model and field testing on a typical hanger cable of a real-world arch bridge. Overall, the study results indicated that the proposed methodology could expediently and cost-effectively estimate the tension forces of a cable with reasonably acceptable identification accuracy.


Measurement ◽  
2021 ◽  
pp. 109211
Author(s):  
Matthew Southwick ◽  
Zhu Mao ◽  
Christopher Niezrecki

2013 ◽  
Vol 486 ◽  
pp. 36-41 ◽  
Author(s):  
Róbert Huňady ◽  
František Trebuňa ◽  
Martin Hagara ◽  
Martin Schrötter

Experimental modal analysis is a relatively young part of dynamics, which deals with the vibration modes identification of machines or their parts. Its development has started since the beginning of the eighties, when the computers hardware equipment has improved and the fast Fourier transform (FFT) could be used for the results determination. Nowadays it provides an uncountable set of vibration analysis possibilities starting with conventional contact transducers of acceleration and ending with modern noncontact optical methods. In this contribution we mention the use of high-speed digital image correlation by experimental determination of mode shapes and modal frequencies. The aim of our work is to create a program application called Modan 3D enabling the performing of experimental modal analysis and operational modal analysis. In this paper the experimental modal analysis of a thin steel sample performed with Q-450 Dantec Dynamics is described. In Modan 3D the experiment data were processed and the vibration modes were determined. The reached results were verified by PULSE modulus specialized for mechanical vibration analysis.


Author(s):  
Ladislav Rolník ◽  
Milan Naď

Abstract The contribution is mainly focused on research and development of structural modification of machine tools, lathes in particular. The main aim of the modification is to change the modal properties (mode shapes, natural frequencies) of the lathe tool. The main objective of the contribution will be to formulate, mathematical analyse and evaluate the proposed methods and procedures for structural modifications of the tool, represented by beam body. A modification of modal properties by insertion of beam cores into beam body is studied in this paper. In this paper, the effect of material properties and geometrical parameters of reinforcing cores on natural frequencies of beam body is presented. The implementation will bring benefit on machine productivity, decreasing the machine tool wear and in many cases it will lead to better conditions in the cutting process.


2020 ◽  
pp. 147592172095216
Author(s):  
Banfu Yan ◽  
Derui Li ◽  
Wenbing Chen ◽  
Lu Deng ◽  
Xiaomo Jiang

Assuming the distance between two nodal points of a specific cable vibration mode as the effective length of a pinned–pinned cable, mode shape–aided cable tension estimation methods are employed to estimate the cable force. This article proposes a framework based on digital image correlation technique for remote measurement of the dynamic displacement time history of cables in cable structures. Frequency domain decomposition technique is then used to extract the cable natural frequencies and mode shapes. Identified cable mode shapes are used along with a tensioned pinned–pinned cable model to estimate the cable force. Accuracy of the proposed methodology is investigated using the experimental data coming from a laboratory-scale test setup and hanger cables of a real-world arch bridge.


2011 ◽  
Vol 70 ◽  
pp. 39-44 ◽  
Author(s):  
Wei Zhuo Wang ◽  
John E. Mottershead ◽  
Christopher M Sebastian ◽  
Eann A Patterson ◽  
Thorsten Siebert ◽  
...  

Recent advances in measurement techniques, including digital image correlation, automated photoelasticity, electronic speckle pattern interferometry and thermoelastic stress analysis, permit full-field maps of displacement or strain to be obtained easily. They provide large volumes of mostly redundant data, which should be condensed to the essential information to permit straightforward processes such as validations of computational models or damage assessments. A way to do this is by image processing, an important aspect of which is the definition of an orthogonal basis (orthogonal kernel functions). Generally, this is problem dependent and requires some skill from the analyst if the number of image features (the coefficients of the orthogonal basis) is to be restricted to a suitably small number. Advantage may be taken of patterns of symmetry, for example cyclically symmetric patterns are well-suited to treatment by Zernike polynomials and rectangular patterns are well-suited to treatment by Fourier series. The Zernike and Fourier kernels are continuous polynomials with orthogonality properties that require integration and must be discretised. The discrete Tchebichef polynomials are ideal for the treatment of full-field information at multiple discrete data points. In many cases the data field is localised around a particular feature, such as local strain around a hole in a tension-test specimen. In this case, the polynomial basis should similarly be localised by various forms of scaling – this requires the application of the Gram-Schmidt procedure to maintain orthogonality. The image features (sometimes called shape features) are meaningful and may be used to identify particular patterns in the data – e.g. for detecting cracks or other forms of damage. When assembled in a feature vector, the distance between feature vectors from measured and numerical results are useful for refining numerical models. In this paper the principles of image analysis, as applied to full-field displacement/strain data are explained and experimental examples are used to illustrate the practical usefulness of the method. The applications include (i) vibration mode shapes of laminated honeycomb structures and, (ii) strain in an aluminium plate with a central hole in tension.


2017 ◽  
Vol 81 (1) ◽  
pp. 37 ◽  
Author(s):  
Jintao Wang ◽  
Xinjun Chen ◽  
Kisei Tanaka ◽  
Jie Cao ◽  
Yong Chen

Ommastrephid squids are short-lived ecological opportunists and their recruitment is largely driven by the surrounding environment. While recent studies suggest that recruitment variability in several squid species can be partially explained by environmental variability derived from synoptic oceanographic data, assessment of ommastrephid stocks using environmental variability is rare. In thisstudy, we modified asurplus production model to incorporate environmental variability into the assessment of threeommastrephid squids (Ommastrephes bartramii in the northwest Pacific, Illex argentinus in the southwest Atlantic and Dosidicus gigas in the southwest Pacific). We assumed that the key environmental variables—suitable sea surface temperature on spawning grounds during the spawning seasons and feeding grounds during the feeding seasons—have effects on the carrying capacity and the instantaneous population growth rate, respectively, in the surplus production model. For each squid stock, the assessment model with environmental variability had the highest fitting accuracy and the lowest mean squared error and coefficient of variation, and the management reference points based on the optimal model were more precautionary. This study advances our understanding of the interactions between the environment and ommastrephid squid population dynamics and can therefore improve the management of these commercially valuable stocks with a short life cycle.


Sign in / Sign up

Export Citation Format

Share Document