scholarly journals A Study of Terahertz-Wave Cylindrical Super-Oscillatory Lens for Industrial Applications

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6732
Author(s):  
Ayato Iba ◽  
Makoto Ikeda ◽  
Verdad C. Agulto ◽  
Valynn Katrine Mag-usara ◽  
Makoto Nakajima

This paper describes the design and development of a cylindrical super-oscillatory lens (CSOL) for applications in the sub-terahertz frequency range, which are especially ideal for industrial inspection of films using terahertz (THz) and millimeter waves. Product inspections require high resolution (same as inspection with visible light), long working distance, and long depth of focus (DOF). However, these are difficult to achieve using conventional THz components due to diffraction limits. Here, we present a numerical approach in designing a 100 mm × 100 mm CSOL with optimum properties and performance for 0.1 THz (wavelength λ = 3 mm). Simulations show that, at a focal length of 70 mm (23.3λ), the focused beam by the optimized CSOL is a thin line with a width of 2.5 mm (0.84λ), which is 0.79 times the diffraction limit. The DOF of 10 mm (3.3λ) is longer than that of conventional lenses. The results also indicate that the generation of thin line-shaped focal beam is dominantly influenced by the outer part of the lens.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mohammed Al-Smadi ◽  
Nadir Djeddi ◽  
Shaher Momani ◽  
Shrideh Al-Omari ◽  
Serkan Araci

AbstractOur aim in this paper is presenting an attractive numerical approach giving an accurate solution to the nonlinear fractional Abel differential equation based on a reproducing kernel algorithm with model endowed with a Caputo–Fabrizio fractional derivative. By means of such an approach, we utilize the Gram–Schmidt orthogonalization process to create an orthonormal set of bases that leads to an appropriate solution in the Hilbert space $\mathcal{H}^{2}[a,b]$ H 2 [ a , b ] . We investigate and discuss stability and convergence of the proposed method. The n-term series solution converges uniformly to the analytic solution. We present several numerical examples of potential interests to illustrate the reliability, efficacy, and performance of the method under the influence of the Caputo–Fabrizio derivative. The gained results have shown superiority of the reproducing kernel algorithm and its infinite accuracy with a least time and efforts in solving the fractional Abel-type model. Therefore, in this direction, the proposed algorithm is an alternative and systematic tool for analyzing the behavior of many nonlinear temporal fractional differential equations emerging in the fields of engineering, physics, and sciences.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xiang Li ◽  
Jianzheng Liu ◽  
Jessica Baron ◽  
Khoa Luu ◽  
Eric Patterson

AbstractRecent attention to facial alignment and landmark detection methods, particularly with application of deep convolutional neural networks, have yielded notable improvements. Neither these neural-network nor more traditional methods, though, have been tested directly regarding performance differences due to camera-lens focal length nor camera viewing angle of subjects systematically across the viewing hemisphere. This work uses photo-realistic, synthesized facial images with varying parameters and corresponding ground-truth landmarks to enable comparison of alignment and landmark detection techniques relative to general performance, performance across focal length, and performance across viewing angle. Recently published high-performing methods along with traditional techniques are compared in regards to these aspects.


Friction ◽  
2021 ◽  
Author(s):  
Vigneashwara Pandiyan ◽  
Josef Prost ◽  
Georg Vorlaufer ◽  
Markus Varga ◽  
Kilian Wasmer

AbstractFunctional surfaces in relative contact and motion are prone to wear and tear, resulting in loss of efficiency and performance of the workpieces/machines. Wear occurs in the form of adhesion, abrasion, scuffing, galling, and scoring between contacts. However, the rate of the wear phenomenon depends primarily on the physical properties and the surrounding environment. Monitoring the integrity of surfaces by offline inspections leads to significant wasted machine time. A potential alternate option to offline inspection currently practiced in industries is the analysis of sensors signatures capable of capturing the wear state and correlating it with the wear phenomenon, followed by in situ classification using a state-of-the-art machine learning (ML) algorithm. Though this technique is better than offline inspection, it possesses inherent disadvantages for training the ML models. Ideally, supervised training of ML models requires the datasets considered for the classification to be of equal weightage to avoid biasing. The collection of such a dataset is very cumbersome and expensive in practice, as in real industrial applications, the malfunction period is minimal compared to normal operation. Furthermore, classification models would not classify new wear phenomena from the normal regime if they are unfamiliar. As a promising alternative, in this work, we propose a methodology able to differentiate the abnormal regimes, i.e., wear phenomenon regimes, from the normal regime. This is carried out by familiarizing the ML algorithms only with the distribution of the acoustic emission (AE) signals captured using a microphone related to the normal regime. As a result, the ML algorithms would be able to detect whether some overlaps exist with the learnt distributions when a new, unseen signal arrives. To achieve this goal, a generative convolutional neural network (CNN) architecture based on variational auto encoder (VAE) is built and trained. During the validation procedure of the proposed CNN architectures, we were capable of identifying acoustics signals corresponding to the normal and abnormal wear regime with an accuracy of 97% and 80%. Hence, our approach shows very promising results for in situ and real-time condition monitoring or even wear prediction in tribological applications.


2020 ◽  
Vol 8 (Spl-2-AABAS) ◽  
pp. S361-S367
Author(s):  
Yermek Abilmazhinov ◽  
◽  
Galiya Abdilova ◽  
Maksim Rebezov ◽  
Rustem Zalilov ◽  
...  

Most of the technological operations for the production of meat products are mechanised and carried out using specially designed equipment, including meat grinders. This paper reviews meat grinders of different design and performance, used in both household and industrial applications. The technical characteristics, construction and operating principle of the meat grinder are described.


Author(s):  
K. C. Manjunatha ◽  
H. S. Mohana ◽  
P. A. Vijaya

Intelligent process control technology in various manufacturing industries is important. Vision-based non-magnetic object detection on moving conveyor in the steel industry will play a vital role for intelligent processes and raw material handling. This chapter presents an approach for a vision-based system that performs the detection of non-magnetic objects on raw material moving conveyor in a secondary steel-making industry. At single camera level, a vision-based differential algorithm is applied to recognize an object. Image pixels-based differential techniques, optical flow, and motion-based segmentations are used for traffic parameters extraction; the proposed approach extends those futures into industrial applications. The authors implement a smart control system, since they can save the energy and control unnecessary breakdowns in a robust manner. The technique developed for non-magnetic object detection has a single static background. Establishing background and background subtraction from continuous video input frames forms the basis. Detection of non-magnetic materials, which are moving with raw materials, and taking immediate action at the same stage as the material handling system will avoid the breakdowns or power wastage. The authors achieve accuracy up to 95% with the computational time of not more than 1.5 seconds for complete system execution.


2018 ◽  
pp. 1820-1837
Author(s):  
K. C. Manjunatha ◽  
H. S. Mohana ◽  
P. A. Vijaya

Intelligent process control technology in various manufacturing industries is important. Vision-based non-magnetic object detection on moving conveyor in the steel industry will play a vital role for intelligent processes and raw material handling. This chapter presents an approach for a vision-based system that performs the detection of non-magnetic objects on raw material moving conveyor in a secondary steel-making industry. At single camera level, a vision-based differential algorithm is applied to recognize an object. Image pixels-based differential techniques, optical flow, and motion-based segmentations are used for traffic parameters extraction; the proposed approach extends those futures into industrial applications. The authors implement a smart control system, since they can save the energy and control unnecessary breakdowns in a robust manner. The technique developed for non-magnetic object detection has a single static background. Establishing background and background subtraction from continuous video input frames forms the basis. Detection of non-magnetic materials, which are moving with raw materials, and taking immediate action at the same stage as the material handling system will avoid the breakdowns or power wastage. The authors achieve accuracy up to 95% with the computational time of not more than 1.5 seconds for complete system execution.


2019 ◽  
Vol 29 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Wafaa K. Mahmood ◽  
Wafaa A. Khadum ◽  
E. Eman ◽  
Hayder A. Abdulbari

AbstractArtificial polymeric additives are known, and experimentally proven, to be effective drag reducing agents in pipelines with turbulent flow medium. The artificial nature of these additives and their low resistance to high shear forces, exerted by the pipeline geometries and equipment, are considered as major problems against a wider implementation in other industrial applications. The present work introduces a new polymer-surfactant complex of two organic additives (chitosan and sodium laurel ether sulfate, SLES) as a drag reducing agent. The rheological and morphological properties of the new complexes were experimentally tested. The new complex’s drag reduction performance and stability against high shear forces were analyzed using rotating disk apparatus. All the investigated solutions and complexes showed a non-Newtonian behavior. The cryo-TEM images showed a unique polymer-surfactant macrocomplex structure with a nonlinear relationship between its rheological properties and surfactant concentration. A maximum flow enhancement of 47.75% was obtained by the complex (chitosan 300 and 400ppmof chitosan and SLES, respectively) at the rotation speed of 3000 rpm. Finally, the stability of the proposed additives was highly modified when the additive complexes were formed.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 65 ◽  
Author(s):  
Pavel Ripka ◽  
Josef Blažek ◽  
Mehran Mirzaei ◽  
Pavol Lipovský ◽  
Miroslav Šmelko ◽  
...  

Magnetic position and speed sensors are rugged and durable. While DC magnetic sensors use permanent magnets as a field source and usually have only mm or cm range, inductive sensors use electromagnetic induction and they may work up to a distance of 20 m. Eddy current inductive sensors equipped with magnetoresistive sensors instead of inductive coils can operate at low frequencies, allowing detection through a conductive wall. In this paper, we make an overview of existing systems and we present new results in eddy current velocity and position measurements. We also present several types of inductive position sensors developed in our laboratories for industrial applications in pneumatic and hydraulic cylinders, underground drilling, large mining machines, and for detecting ferromagnetic objects on conveyors. While the most precise inductive position sensors have a resolution of 10 nm and linearity of 0.2%, precision requirements on the industrial sensors which we develop are less demanding, but they should have large working distance and large resistance to environmental conditions and interference.


Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 308 ◽  
Author(s):  
Christian Kledwig ◽  
Holger Perfahl ◽  
Martin Reisacher ◽  
Frank Brückner ◽  
Jens Bliedtner ◽  
...  

The growing number of commercially available machines for laser deposition welding show the growing acceptance and importance of this technology for industrial applications. Their increasing usage in research and production requires process stability and user-friendly handling. A commercially available DMG MORI LT 65 3D hybrid machine used in combination with a CCD-based coaxial temperature measurement system was utilized in this work to investigate what information relating to the intensity distribution of melt pool surfaces could be appropriate to draw conclusions about process conditions. In this study it is shown how the minimal required specific energy for a stable process can be determined, and it is indicated that the evolution of a plasma plume depends on thermal energy within the base material. An estimated melt pool area—calculated by the number of pixels (NOP) with intensities larger than a fixed, predefined threshold—builds the main measure in analysing images from the process camera. The melt pool area and its temporal variance can also serve as an indicator for an increased working distance.


Sign in / Sign up

Export Citation Format

Share Document