scholarly journals Investigation of Advanced Robotized Polymer Sheet Incremental Forming Process

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7459
Author(s):  
Vytautas Ostasevicius ◽  
Darius Eidukynas ◽  
Vytautas Jurenas ◽  
Ieva Paleviciute ◽  
Marius Gudauskis ◽  
...  

The aim of this work is to evaluate the possibility of inexpensively producing small-batch polymer sheet components using robotized single point incremental forming (SPIF) without backing plate support. An innovative method of thermal and ultrasound assisted deformation of a polymer sheet is proposed using a tool with a sphere mounted in a ring-shaped magnetic holder, the friction of which with the tool holder is reduced by ultrasound, and the heating is performed by a laser. The heated tool moving on the sheet surface locally increases the plasticity of the polyvinyl chloride (PVC) polymer in the contact zone with less deforming force does not reducing the stiffness of the polymer around the tool contact area and eliminating the need for a backing plate. The free 3D rotating ball also changes the slip of the tool on the surface of the polymer sheet by the rolling, thereby improving the surface quality of the product. The finite element method (FEM) allowed the virtual evaluation of the deformation parameters of the SPIF. Significant process parameters were found, and the behavior of the heated polymer sheet was determined.

2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


Author(s):  
Amirahmad Mohammadi ◽  
Hans Vanhove ◽  
Albert Van Bael ◽  
Marc Seefeldt ◽  
Joost R. Duflou

This study examines the possibility of applying lasers for the formation of laser-affected bands in hardenable steel sheets, with a specific focus on how the formation of these hardened bands can improve the accuracy of the single point incremental forming process (SPIF). For this purpose, the process parameters for the hardening process have been chosen using finite-element (FE) modeling. The results of the modeling have been validated by temperature field measurements obtained from IR camera observations. The microstructural analysis of the laser-affected zones has been performed using optical microscopy (OM) and scanning electron microscopy (SEM). These investigations confirm a phase transformation to a martensitic structure during laser scanning, and microhardness (HV0·1) results show a hardness increase by a factor of about three in the laser-affected region in comparison to that of the base metal (BM). Finally, using a laser assisted single point incremental forming (LASPIF) setup, hardened bands have been generated for preprocessing and intermediate processing during the different phases of a SPIF procedure. Geometric accuracy studies show that appropriate use of hard martensitic bands can increase the process accuracy through significantly reduction of an unwanted sheet deformation, and has the potential to eliminate the need for a backing plate.


Author(s):  
Tyler J. Grimm ◽  
Shubhamkar Kulkarni ◽  
Laine Mears ◽  
Gregory Mocko

Abstract Single point incremental forming (SPIF) is a dieless forming process for sheet materials. This process forms materials with a hemispherical forming tool which locally deforms the sheet at incremental depths. The freeform nature of this process promises significant efficiency improvements within small and medium volume industries where stamping is traditionally used. However, several drawbacks currently inhibit its widespread use. One of these drawbacks is springback or elastic recovery resulting in reduced geometrical accuracy. An existing approach to counter this involves using a dedicated backing die, increasing the cost of the forming apparatus and the overall energy input per part. Other springback reduction methods involve the direct addition of energy to the workpiece through electrical or heat input. This study investigates the use of sacrificial steel blanks as backing dies for incremental forming of polycarbonate sheets, to overcome the loss in geometrical accuracy affiliated with forming geometries with a relatively large distance between the geometry periphery and the clamped edge. The blanks were not bound to each other, but rather clamped along their edges. In this study, polycarbonate blanks were tested using a three-factorial design of experiments, with relative plate thicknesses of 0.4, 0.5, and 0.6, and wall angles of 15°, 30°, 45°, and 60° as independent factors. The test geometry used was a straight walled pyramid with a square base. Using the backing sheet, a reduction in the springback was observed, demonstrating the effectiveness of sacrificial backing blanks. Particularly, the ‘pillow effect’ at the base of the geometry was reduced. This is attributed to the higher stiffness of the steel plates, increasing the plastic strain on the polycarbonate. However, the formability is found to decrease for higher values of the backing plate thickness due to premature steel failure. In future studies, this work will be expanded to include additional thickness ratios, geometries, toolpath types, step sizes and materials to form a more complete trend.


2019 ◽  
Vol 71 (1) ◽  
pp. 62-66 ◽  
Author(s):  
Mihai-Octavian Popp ◽  
Mihaela Oleksik ◽  
Sever-Gabriel Racz ◽  
Gabriela-Petruța Rusu

Abstract Incremental forming process is a relatively new process among researchers, which is yet to be implemented in automotive and aerospace industries. The researchers are studying various process strategies and methods to improve the geometrical accuracy of the parts obtained by incremental forming, because the geometry of the parts is one of the key factors holding back the process industrialization. One good method to investigate the benefits of a process strategy is by means of numerical analysis, from which the results obtained can confirm or disprove the gains of the researched strategy. The aim of this paper is to present the advantages of using a fluid under pressure as a supporting die instead of using a conventional fixed backing plate for the single point incremental forming process.


2021 ◽  
Vol 343 ◽  
pp. 03008
Author(s):  
Nicolae Rosca ◽  
Mihaela Oleksik ◽  
Liviu Rosca

The present paper proposes a numerical-experimental comparative study on the single point incremental forming process. A DC04 steel sheet with a thickness of 0.6 mm was used for both the numerical simulation using the finite element method and the experimental research. The type of trajectory used was a spiral trajectory and the finished part obtained was a truncated cone-shaped part. The analysis program used for simulation was Ls-Dyna. The simulations were performed in several variants: with a fixed mesh and with an adaptive mesh, using two different element formulations: 25 (Belytschko-Tsay formulation with thickness stretch) and -16 (fully integrated shell element modified for higher accuracy) and two contact types: automatic surface to surface (ASTS) and forming one way surface to surface (FOSS). The results of the numerical analysis and of the experimental research were focused on determining the major strain, minor strain, thickness reduction and forces at the end of the single point incremental forming process, as well as determining the processing time.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.


Sign in / Sign up

Export Citation Format

Share Document