Experimental Investigation of a Backing Sheet Stiffener in Incremental Forming of Polycarbonate

Author(s):  
Tyler J. Grimm ◽  
Shubhamkar Kulkarni ◽  
Laine Mears ◽  
Gregory Mocko

Abstract Single point incremental forming (SPIF) is a dieless forming process for sheet materials. This process forms materials with a hemispherical forming tool which locally deforms the sheet at incremental depths. The freeform nature of this process promises significant efficiency improvements within small and medium volume industries where stamping is traditionally used. However, several drawbacks currently inhibit its widespread use. One of these drawbacks is springback or elastic recovery resulting in reduced geometrical accuracy. An existing approach to counter this involves using a dedicated backing die, increasing the cost of the forming apparatus and the overall energy input per part. Other springback reduction methods involve the direct addition of energy to the workpiece through electrical or heat input. This study investigates the use of sacrificial steel blanks as backing dies for incremental forming of polycarbonate sheets, to overcome the loss in geometrical accuracy affiliated with forming geometries with a relatively large distance between the geometry periphery and the clamped edge. The blanks were not bound to each other, but rather clamped along their edges. In this study, polycarbonate blanks were tested using a three-factorial design of experiments, with relative plate thicknesses of 0.4, 0.5, and 0.6, and wall angles of 15°, 30°, 45°, and 60° as independent factors. The test geometry used was a straight walled pyramid with a square base. Using the backing sheet, a reduction in the springback was observed, demonstrating the effectiveness of sacrificial backing blanks. Particularly, the ‘pillow effect’ at the base of the geometry was reduced. This is attributed to the higher stiffness of the steel plates, increasing the plastic strain on the polycarbonate. However, the formability is found to decrease for higher values of the backing plate thickness due to premature steel failure. In future studies, this work will be expanded to include additional thickness ratios, geometries, toolpath types, step sizes and materials to form a more complete trend.

2019 ◽  
Vol 71 (1) ◽  
pp. 62-66 ◽  
Author(s):  
Mihai-Octavian Popp ◽  
Mihaela Oleksik ◽  
Sever-Gabriel Racz ◽  
Gabriela-Petruța Rusu

Abstract Incremental forming process is a relatively new process among researchers, which is yet to be implemented in automotive and aerospace industries. The researchers are studying various process strategies and methods to improve the geometrical accuracy of the parts obtained by incremental forming, because the geometry of the parts is one of the key factors holding back the process industrialization. One good method to investigate the benefits of a process strategy is by means of numerical analysis, from which the results obtained can confirm or disprove the gains of the researched strategy. The aim of this paper is to present the advantages of using a fluid under pressure as a supporting die instead of using a conventional fixed backing plate for the single point incremental forming process.


2017 ◽  
Vol 867 ◽  
pp. 177-183 ◽  
Author(s):  
Vikrant Sharma ◽  
Ashish Gohil ◽  
Bharat Modi

Incremental sheet forming is one of the latest processes in sheet metal forming industry which has drawn attention of various researchers. It has shown improved formability compared to stamping process. Single Point Incremental Forming (SPIF) process requires only hemispherical tool and no die is required hence, it is a die-less forming process. In this paper experimental investigation on SPIF for Aluminium sheet has been presented. A groove test on Vertical Machining Centre has been performed. Factors (Step depth, Blank holder clamping area, Backing plate radius, Program strategy, Feed rate and Tool diameter) affecting the process are identified and experiments are carried out using fractional factorial design of experiments. Effect of the factors on fractured depth, forming time and surface finish have been analyzed using Minitab 17 software.


Author(s):  
Amirahmad Mohammadi ◽  
Hans Vanhove ◽  
Albert Van Bael ◽  
Marc Seefeldt ◽  
Joost R. Duflou

This study examines the possibility of applying lasers for the formation of laser-affected bands in hardenable steel sheets, with a specific focus on how the formation of these hardened bands can improve the accuracy of the single point incremental forming process (SPIF). For this purpose, the process parameters for the hardening process have been chosen using finite-element (FE) modeling. The results of the modeling have been validated by temperature field measurements obtained from IR camera observations. The microstructural analysis of the laser-affected zones has been performed using optical microscopy (OM) and scanning electron microscopy (SEM). These investigations confirm a phase transformation to a martensitic structure during laser scanning, and microhardness (HV0·1) results show a hardness increase by a factor of about three in the laser-affected region in comparison to that of the base metal (BM). Finally, using a laser assisted single point incremental forming (LASPIF) setup, hardened bands have been generated for preprocessing and intermediate processing during the different phases of a SPIF procedure. Geometric accuracy studies show that appropriate use of hard martensitic bands can increase the process accuracy through significantly reduction of an unwanted sheet deformation, and has the potential to eliminate the need for a backing plate.


Author(s):  
Paolo Bosetti ◽  
Stefania Bruschi

One of the major drawbacks of single-point incremental forming process for sheet metal (SPIF) consists in the poor geometrical accuracy of formed parts. This limits the use of SPIF technology and has pushed the development of alternative incremental processes—such as the two-points incremental forming—aimed at improving the forming accuracy. However, these processes require the use of supporting dies and they therefore reduce the competitive advantage of SPIF process. The possibility to compensate for part springback, in order to have the part geometry as close as possible to the nominal one, represents one of the major challenges to make SPIF process suitable for real industrial applications. However, any possible approach in springback compensation must pass through the comprehension of the springback phenomenon. The objective of the paper is to analyze the springback of parts made by SPIF, by evaluating the influence that elastic recovery before and after the part unclamping has on the final part geometry. A SPIF experimental campaign was carried out on a truncated pyramid as case study, by varying both the part geometrical parameters (the wall angle and the height), and the process parameters (the tool step-down size and the feed rate). The material used in this study was the duplex steel DP600 provided in 0.8 mm thick sheets. After forming—but before unclamping—the part geometry was measured by means of of an electronic touch probe mounted on the machine tool-holder, in order to investigate the elastic recovery due to the successive tool laps. After unclamping, the part geometry was measured on a coordinate measuring machine. The influence of geometrical and process parameters was analyzed and the contribution of elastic recovery before and after the part unclamping was assessed.


Author(s):  
Tyler J. Grimm ◽  
Laine Mears

Abstract Incremental forming (IF) is a novel sheet material forming process which promises significant energy savings within the low and medium volume sheet production industries. This advantage stems from IF’s dieless forming nature, which alleviates the need for time and energy input towards die fabrication and offers significantly greater flexibility. However, a distinct disadvantage of this process is its relatively low forming rate compared to conventional stamping, which reduces its feasibility of use in higher volume productions. Springback is one disadvantage of incremental forming which has hindered its implementation within industry. Spring-back reduction methods, as well as springback characterization, can be found throughout literature. However, very few publications disclose the clamping dimensions used for fixturing work-pieces. This study numerically determines the springback effect of utilizing various clamping structures and presents an empirical solution for determining the springback of truncated pyramid geometries for various constraining areas. The resulting equation was found to have an acceptable degree of error relative to experimental analysis.


2014 ◽  
Vol 979 ◽  
pp. 339-342 ◽  
Author(s):  
Kittiphat Rattanachan ◽  
K. Sirivedin ◽  
Chatchapol Chungchoo

This paper is focused on single point incremental forming (SPIF) of a tailored welded blanks (TWBs) that produced by laser welding process. The SPIF process is a new dieless forming technology, which is a fast and economic solution to prototyping a metal sheet product. In the past, the SPIF researches carried out with the homogeneous metal sheet blank, but now a day, the demand of TWBs is still increased especially for an automotive industry. The aim of this research is to study the formability on the weld line of laser welding TWBs (SUS 304 and St 37) by the SPIF process.


2019 ◽  
Vol 14 (4) ◽  
Author(s):  
Shalin Marathe ◽  
Harit Raval

Single Point Incremental Forming (SPIF) process is one of the advanced forming techniques that industry has nowadays. Improved formability is one of the major advantages of the process. However, it is associated with limitation such as thinning of blank and poor geometrical accuracy of the formed part. In this study, forming behaviour of homogeneous blanks during the SPIF process has been investigated. A simulation study has been carried out using ABAQUS/Explicit. Effect of change in thickness, yield strength, strain index and strength coefficient of blank on responses like Plastic Equivalent Strain (PEEQ), percentage of thinning and geometrical accuracy of formed component has been evaluated. It has been found that change in the thickness has major effect on PEEQ and geometrical accuracy. Regarding percentage of thinning, change in the yield strength of blank is found to be majorly affecting.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7459
Author(s):  
Vytautas Ostasevicius ◽  
Darius Eidukynas ◽  
Vytautas Jurenas ◽  
Ieva Paleviciute ◽  
Marius Gudauskis ◽  
...  

The aim of this work is to evaluate the possibility of inexpensively producing small-batch polymer sheet components using robotized single point incremental forming (SPIF) without backing plate support. An innovative method of thermal and ultrasound assisted deformation of a polymer sheet is proposed using a tool with a sphere mounted in a ring-shaped magnetic holder, the friction of which with the tool holder is reduced by ultrasound, and the heating is performed by a laser. The heated tool moving on the sheet surface locally increases the plasticity of the polyvinyl chloride (PVC) polymer in the contact zone with less deforming force does not reducing the stiffness of the polymer around the tool contact area and eliminating the need for a backing plate. The free 3D rotating ball also changes the slip of the tool on the surface of the polymer sheet by the rolling, thereby improving the surface quality of the product. The finite element method (FEM) allowed the virtual evaluation of the deformation parameters of the SPIF. Significant process parameters were found, and the behavior of the heated polymer sheet was determined.


2021 ◽  
Vol 883 ◽  
pp. 217-224
Author(s):  
Yannick Carette ◽  
Marthe Vanhulst ◽  
Joost R. Duflou

Despite years of supporting research, commercial use of the Single Point Incremental Forming process remains very limited. The promised flexibility and lack of specific tooling is contradicted by its highly complex deformation mechanics, resulting in a process that is easy to implement but where workpiece accuracy is very difficult to control. This paper looks at geometry compensation as a viable control strategy to increase the accuracy of produced workpieces. The input geometry of the process can be compensated using knowledge about the deformations occurring during production. The deviations between the nominal CAD geometry and the actual produced geometry can be calculated in a variety of different ways, thus directly influencing the compensation. Two different alignment methods and three deviation calculation methods are explained in detail. Six combined deviation calculation methods are used to generate compensated inputs, which are experimentally produced and compared to the uncompensated part. All different methods are able to noticeably improve the accuracy, with the production alignment and closest point deviation calculation achieving the best results


Sign in / Sign up

Export Citation Format

Share Document