scholarly journals An Algorithm for Fitting Sphere Target of Terrestrial LiDAR

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7546
Author(s):  
Yintao Shi ◽  
Gang Zhao ◽  
Maomei Wang ◽  
Yi Xu ◽  
Dadong Zhu

The sphere target played a vital role in terrestrial LiDAR applications, and solving its geometrical center based on point cloud was a widely concerned problem. In this study, we proposed a newly finite random search algorithm for sphere target fitting. Based on the point cloud data and the geometric characteristics of the sphere target, the algorithm realized the target sphere fitting from the perspective of probability and statistics with the help of parameter estimation. Firstly, an initial constraint space was constructed, and the initial center and radius were determined by finite random search. Then, the optimal spherical center and radius were determined gradually through continuous iterative optimization. We tested the algorithm with the simulated and realistic point cloud. Experimental results showed that the proposed algorithm could be effectively applied to all kinds of point cloud fitting. When the coverage rate was bigger than 30%, the fitting accuracy could reach within 0.01 mm for all kinds of point clouds. When the coverage rate was less than 20%, the fitting accuracy can reach ±1 mm, although it was reduced to a certain extent.

2020 ◽  
Vol 12 (22) ◽  
pp. 3824
Author(s):  
Mingyao Ai ◽  
Yuan Yao ◽  
Qingwu Hu ◽  
Yue Wang ◽  
Wei Wang

Effective 3D tree reconstruction based on point clouds from terrestrial Light Detection and Ranging (LiDAR) scans (TLS) has been widely recognized as a critical technology in forestry and ecology modeling. The major advantages of using TLS lie in its rapidly and automatically capturing tree information at millimeter level, providing massive high-density data. In addition, TLS 3D tree reconstruction allows for occlusions and complex structures from the derived point cloud of trees to be obtained. In this paper, an automatic tree skeleton extraction approach based on multi-view slicing is proposed to improve the TLS 3D tree reconstruction, which borrowed the idea from the medical imaging technology of X-ray computed tomography. Firstly, we extracted the precise trunk center and then cut the point cloud of the tree into slices. Next, the skeleton from each slice was generated using the kernel mean shift and principal component analysis algorithms. Accordingly, these isolated skeletons were smoothed and morphologically synthetized. Finally, the validation in point clouds of two trees acquired from multi-view TLS further demonstrated the potential of the proposed framework in efficiently dealing with TLS point cloud data.


2020 ◽  
Vol 12 (9) ◽  
pp. 1452
Author(s):  
Ming Huang ◽  
Xueyu Wu ◽  
Xianglei Liu ◽  
Tianhang Meng ◽  
Peiyuan Zhu

The preference of three-dimensional representation of underground cable wells from two-dimensional symbols is a developing trend, and three-dimensional (3D) point cloud data is widely used due to its high precision. In this study, we utilize the characteristics of 3D terrestrial lidar point cloud data to build a CSG-BRep 3D model of underground cable wells, whose spatial topological relationship is fully considered. In order to simplify the modeling process, first, point cloud simplification is performed; then, the point cloud main axis is extracted by OBB bounding box, and lastly the point cloud orientation correction is realized by quaternion rotation. Furthermore, employing the adaptive method, the top point cloud is extracted, and it is projected for boundary extraction. Thereupon, utilizing the boundary information, we design the 3D cable well model. Finally, the cable well component model is generated by scanning the original point cloud. The experiments demonstrate that, along with the algorithm being fast, the proposed model is effective at displaying the 3D information of the actual cable wells and meets the current production demands.


2018 ◽  
Vol 12 (1) ◽  
pp. 109-127 ◽  
Author(s):  
Dimitrios Bolkas ◽  
Aaron Martinez

AbstractPoint-cloud coordinate information derived from terrestrial Light Detection And Ranging (LiDAR) is important for several applications in surveying and civil engineering. Plane fitting and segmentation of target-surfaces is an important step in several applications such as in the monitoring of structures. Reliable parametric modeling and segmentation relies on the underlying quality of the point-cloud. Therefore, understanding how point-cloud errors affect fitting of planes and segmentation is important. Point-cloud intensity, which accompanies the point-cloud data, often goes hand-in-hand with point-cloud noise. This study uses industrial particle boards painted with eight different colors (black, white, grey, red, green, blue, brown, and yellow) and two different sheens (flat and semi-gloss) to explore how noise and plane residuals vary with scanning geometry (i.e., distance and incidence angle) and target-color. Results show that darker colors, such as black and brown, can produce point clouds that are several times noisier than bright targets, such as white. In addition, semi-gloss targets manage to reduce noise in dark targets by about 2–3 times. The study of plane residuals with scanning geometry reveals that, in many of the cases tested, residuals decrease with increasing incidence angles, which can assist in understanding the distribution of plane residuals in a dataset. Finally, a scheme is developed to derive survey guidelines based on the data collected in this experiment. Three examples demonstrate that users should consider instrument specification, required precision of plane residuals, required point-spacing, target-color, and target-sheen, when selecting scanning locations. Outcomes of this study can aid users to select appropriate instrumentation and improve planning of terrestrial LiDAR data-acquisition.


2012 ◽  
Vol 201-202 ◽  
pp. 834-837
Author(s):  
Xue Chang Zhang ◽  
Tao Liang ◽  
Yan Mei Tang ◽  
Xu Zhang

In the product modeling based on the reverse engineering, the point cloud data smoothing and multi-view point cloud data registration will be related to search some nearest neighbor points. The search speed will determine the efficiency of product modeling in some cases. The paper analysis the nearest neighbor point query algorithms, KD tree and Range tree, based on the space partition principle. The tree structure creation and query method are described by pseudo-code in the paper. Finally, the experimental results involving different sizes point clouds demonstrate that KD tree and Range tree have their own advantages in space storage and time complexity. Two data strictures all meet the efficiency of the search algorithm.


Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 884
Author(s):  
Chia-Ming Tsai ◽  
Yi-Horng Lai ◽  
Yung-Da Sun ◽  
Yu-Jen Chung ◽  
Jau-Woei Perng

Numerous sensors can obtain images or point cloud data on land, however, the rapid attenuation of electromagnetic signals and the lack of light in water have been observed to restrict sensing functions. This study expands the utilization of two- and three-dimensional detection technologies in underwater applications to detect abandoned tires. A three-dimensional acoustic sensor, the BV5000, is used in this study to collect underwater point cloud data. Some pre-processing steps are proposed to remove noise and the seabed from raw data. Point clouds are then processed to obtain two data types: a 2D image and a 3D point cloud. Deep learning methods with different dimensions are used to train the models. In the two-dimensional method, the point cloud is transferred into a bird’s eye view image. The Faster R-CNN and YOLOv3 network architectures are used to detect tires. Meanwhile, in the three-dimensional method, the point cloud associated with a tire is cut out from the raw data and is used as training data. The PointNet and PointConv network architectures are then used for tire classification. The results show that both approaches provide good accuracy.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 201
Author(s):  
Michael Bekele Maru ◽  
Donghwan Lee ◽  
Kassahun Demissie Tola ◽  
Seunghee Park

Modeling a structure in the virtual world using three-dimensional (3D) information enhances our understanding, while also aiding in the visualization, of how a structure reacts to any disturbance. Generally, 3D point clouds are used for determining structural behavioral changes. Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing many points on the external surface of an object around it. The main objective of this study was to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which are commonly used in image processing, on the point cloud data for enhancing their accuracy and increasing the application prospects of these sensors in structure health monitoring. The results from these sensors were validated by comparing them with the outputs from a linear variable differential transformer sensor, which was mounted on the beam during an indoor experiment. The results showed that the datasets obtained from both the sensors were acceptable for nominal deflections of 3 mm and above because the error range was less than ±10%. However, the result obtained from the TLS were better than those obtained from the DC.


Aerospace ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 94 ◽  
Author(s):  
Hriday Bavle ◽  
Jose Sanchez-Lopez ◽  
Paloma Puente ◽  
Alejandro Rodriguez-Ramos ◽  
Carlos Sampedro ◽  
...  

This paper presents a fast and robust approach for estimating the flight altitude of multirotor Unmanned Aerial Vehicles (UAVs) using 3D point cloud sensors in cluttered, unstructured, and dynamic indoor environments. The objective is to present a flight altitude estimation algorithm, replacing the conventional sensors such as laser altimeters, barometers, or accelerometers, which have several limitations when used individually. Our proposed algorithm includes two stages: in the first stage, a fast clustering of the measured 3D point cloud data is performed, along with the segmentation of the clustered data into horizontal planes. In the second stage, these segmented horizontal planes are mapped based on the vertical distance with respect to the point cloud sensor frame of reference, in order to provide a robust flight altitude estimation even in presence of several static as well as dynamic ground obstacles. We validate our approach using the IROS 2011 Kinect dataset available in the literature, estimating the altitude of the RGB-D camera using the provided 3D point clouds. We further validate our approach using a point cloud sensor on board a UAV, by means of several autonomous real flights, closing its altitude control loop using the flight altitude estimated by our proposed method, in presence of several different static as well as dynamic ground obstacles. In addition, the implementation of our approach has been integrated in our open-source software framework for aerial robotics called Aerostack.


Sign in / Sign up

Export Citation Format

Share Document