scholarly journals Sea Surface Temperature Analysis for Fengyun-3C Data Using Oriented Elliptic Correlation Scales

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8067
Author(s):  
Zhihong Liao ◽  
Bin Xu ◽  
Junxia Gu ◽  
Chunxiang Shi

Sea surface temperature (SST) is critical for global climate change analysis and research. In this study, we used visible and infrared scanning radiometer (VIRR) sea surface temperature (SST) data from the Fengyun-3C (FY-3C) satellite for SST analysis, and applied the Kalman filtering methods with oriented elliptic correlation scales to construct SST fields. Firstly, the model for the oriented elliptic correlation scale was established for SST analysis. Secondly, observation errors from each type of SST data source were estimated using the optimal matched datasets, and background field errors were calculated using the model of oriented elliptic correlation scale. Finally, the blended SST analysis product was obtained using the Kalman filtering method, then the SST fields using the optimum interpolation (OI) method were chosen for comparison to validate results. The quality analysis for 2016 revealed that the Kalman analysis with a root-mean-square error (RMSE) of 0.3243 °C had better performance than did the OI analysis with a RMSE of 0.3911 °C, which was closer to the OISST product RMSE of 0.2897 °C. The results demonstrated that the Kalman filtering method with dynamic observation error and background error estimation was significantly superior to the OI method in SST analysis for FY-3C SST data.

2020 ◽  
Vol 12 (6) ◽  
pp. 1048 ◽  
Author(s):  
Christopher J. Merchant ◽  
Thomas Block ◽  
Gary K. Corlett ◽  
Owen Embury ◽  
Jonathan P. D. Mittaz ◽  
...  

Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals are commonly combined into gridded SST analyses and climate data records (CDRs). Differential biases between SSTs from different sensors cause errors in such products, including feature artefacts. We introduce a new method for reducing differential biases across the SST constellation, by reconciling the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer (AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined, including BT bias corrections and observation error covariance matrices as functions of water-vapor path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable across the reference-sensor gap. We discuss that this method is suitable to improve consistency across the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future SST CDRs, as well as having application to other domains of remote sensing.


Agromet ◽  
2005 ◽  
Vol 19 (2) ◽  
pp. 43
Author(s):  
Woro Estinigtyas ◽  
S. Suciantini ◽  
G. Irianto

Many approaches have been applied to forecast climate using statistical and deterministic models using independent and dependent variables empirically. It is more practical to analyze the parameters, but it needs validation anytime and anywhere. Kalman filtering unites physical and statistical model approaches to stochastic model renewable anytime for objective of on line forecasting. Based on research, sea surface temperature Nino 3.4 have high correlation with rainfall in Indonesia, so it is used to forecast rainfall in Cirebon as area study. Rainfall clustering in Cirebon results 6 groups with rainfall average 1400-1500 mm/year for dry area and 3000-3200 mm/year for wet area. Validation have correlation coefficient validation value more than 94%, correlation coefficient model value more than 78% and fit model value more than 38%. The result of regression gives R2 value of more than 0,8. It implies that predicting model using Kalman Filter is feasible to forecast montly rainfall based on sea surface temperature Nino 3.4. The result of rainfall prediction in Cirebon show increasing in rainfall until February 2005, with correlation coeficient value of model more than 90% and fit model more than 40%.


2020 ◽  
Vol 12 (7) ◽  
pp. 1083
Author(s):  
Rebecca Reid ◽  
Simon Good ◽  
Matthew J. Martin

Sea surface temperature (SST) analysis systems such as the Operational Sea Surface Temperature and Ice Analysis (OSTIA) use statistical methods to combine observations together with a first guess field to create spatially complete maps of SST. These commonly assume that observation errors are uncorrelated, yet some errors (such as due to retrieval issues) can be correlated. Information about errors is used by the analysis system to determine the weighting to apply to the observations, hence this incorrect assumption could degrade the analysis. A common technique to mitigate for this is to inflate the observation uncertainties. Using information on observation error correlations provided with data produced by the European Space Agency (ESA) SST Climate Change Initiative (CCI) project, idealised tests were carried out to determine how this inflation technique can best be applied. These showed that applying inflation in situations where the observation errors are correlated over similar or larger distances to the errors in the background can cause unpredictable and sometimes negative results. However, in situations where the observation error correlation length scale is relatively small, inflation should improve the analysis. These findings were adapted to the OSTIA system and various configurations were tested. It was found that the inflation methods did not affect statistics of differences between the analyses and independent Argo reference data. However, the SST gradients were affected, particularly if some observation uncertainties were inflated but others were not. The results from both the idealised tests and the application to the real system therefore highlight that it is challenging to implement the inflation method in the case of an SST analysis system and show the need for assimilation schemes that can make full use of observation error correlation information.


2017 ◽  
Vol 51 (4) ◽  
pp. e9-e14 ◽  
Author(s):  
Hiroto Kajita ◽  
Atsuko Yamazaki ◽  
Takaaki Watanabe ◽  
Chung-Che Wu ◽  
Chuan-Chou Shen ◽  
...  

2019 ◽  
Vol 3 ◽  
pp. 929
Author(s):  
Marianus Filipe Logo ◽  
N M. R. R. Cahya Perbani ◽  
Bayu Priyono

Provinsi Nusa Tenggara Timur (NTT) merupakan penghasil rumput laut kappaphycus alvarezii kedua terbesar di Indonesia berdasarkan data Badan Pusat Statistik (2016). Oleh karena itu diperlukan zonasi daerah potensial budidaya rumput laut kappaphycus alvarezii untuk pengembangan lebih lanjut. Penelitian ini bertujuan untuk menentukan daerah yang potensial untuk budidaya rumput laut kappaphycus alvarezii di Provinsi NTT berdasarkan parameter sea surface temperature (SST), salinitas, kedalaman, arus, dissolved oxygen (DO), nitrat, fosfat, klorofil-a, dan muara sungai. Penentuan kesesuaian lokasi budidaya dilakukan dengan memberikan bobot dan skor bagi setiap parameter untuk budidaya rumput laut kappaphycus alvarezii menggunakan sistem informasi geografis melalui overlay peta tematik setiap parameter. Dari penelitian ini diperoleh bahwa kadar nitrat, arus, kedalaman, dan lokasi muara sungai menjadi parameter penentu utama. Jarak maksimum dari bibir pantai adalah sekitar 10 km. Potensial budidaya rumput laut kappaphycus alvarezii ditemukan di Pulau Flores bagian barat, kepulauan di Kabupaten Flores Timur dan Alor, selatan Pulau Sumba, Pulau Rote, dan Teluk Kupang.


Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Tellus B ◽  
1987 ◽  
Vol 39 (1-2) ◽  
pp. 171-183 ◽  
Author(s):  
William P. Elliott ◽  
James K. Angell

Sign in / Sign up

Export Citation Format

Share Document