scholarly journals A Decision Support System for Face Sketch Synthesis Using Deep Learning and Artificial Intelligence

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8178
Author(s):  
Irfan Azhar ◽  
Muhammad Sharif ◽  
Mudassar Raza ◽  
Muhammad Attique Khan ◽  
Hwan-Seung Yong

The recent development in the area of IoT technologies is likely to be implemented extensively in the next decade. There is a great increase in the crime rate, and the handling officers are responsible for dealing with a broad range of cyber and Internet issues during investigation. IoT technologies are helpful in the identification of suspects, and few technologies are available that use IoT and deep learning together for face sketch synthesis. Convolutional neural networks (CNNs) and other constructs of deep learning have become major tools in recent approaches. A new-found architecture of the neural network is anticipated in this work. It is called Spiral-Net, which is a modified version of U-Net fto perform face sketch synthesis (the phase is known as the compiler network C here). Spiral-Net performs in combination with a pre-trained Vgg-19 network called the feature extractor F. It first identifies the top n matches from viewed sketches to a given photo. F is again used to formulate a feature map based on the cosine distance of a candidate sketch formed by C from the top n matches. A customized CNN configuration (called the discriminator D) then computes loss functions based on differences between the candidate sketch and the feature. Values of these loss functions alternately update C and F. The ensemble of these nets is trained and tested on selected datasets, including CUFS, CUFSF, and a part of the IIT photo–sketch dataset. Results of this modified U-Net are acquired by the legacy NLDA (1998) scheme of face recognition and its newer version, OpenBR (2013), which demonstrate an improvement of 5% compared with the current state of the art in its relevant domain.

2021 ◽  
Vol 7 (2) ◽  
pp. 25-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

Super resolution problems are often discussed in medical imaging. The spatial resolution of medical images is insufficient due to limitations such as image acquisition time, low radiation dose or hardware limitations. Various super-resolution methods have been proposed to solve these problems, such as optimization or learning-based approaches. Recently, deep learning methodologies have become a thriving technology and are evolving at an exponential rate. We believe we need to write a review to illustrate the current state of deep learning in super-resolution medical imaging. In this article, we provide an overview of image resolution and the deep learning introduced in super resolution. This document describes super resolution for single images versus super resolution for multiple images, evaluation metrics and loss functions.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


2021 ◽  
Vol 11 (11) ◽  
pp. 4758
Author(s):  
Ana Malta ◽  
Mateus Mendes ◽  
Torres Farinha

Maintenance professionals and other technical staff regularly need to learn to identify new parts in car engines and other equipment. The present work proposes a model of a task assistant based on a deep learning neural network. A YOLOv5 network is used for recognizing some of the constituent parts of an automobile. A dataset of car engine images was created and eight car parts were marked in the images. Then, the neural network was trained to detect each part. The results show that YOLOv5s is able to successfully detect the parts in real time video streams, with high accuracy, thus being useful as an aid to train professionals learning to deal with new equipment using augmented reality. The architecture of an object recognition system using augmented reality glasses is also designed.


Author(s):  
Hongbo Bi ◽  
Ziqi Liu ◽  
Lina Yang ◽  
Kang Wang ◽  
Ning Li

2021 ◽  
Vol 11 (15) ◽  
pp. 7046
Author(s):  
Jorge Francisco Ciprián-Sánchez ◽  
Gilberto Ochoa-Ruiz ◽  
Lucile Rossi ◽  
Frédéric Morandini

Wildfires stand as one of the most relevant natural disasters worldwide, particularly more so due to the effect of climate change and its impact on various societal and environmental levels. In this regard, a significant amount of research has been done in order to address this issue, deploying a wide variety of technologies and following a multi-disciplinary approach. Notably, computer vision has played a fundamental role in this regard. It can be used to extract and combine information from several imaging modalities in regard to fire detection, characterization and wildfire spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based fire segmentation, showing very promising results. However, it is currently unclear whether the architecture of a model, its loss function, or the image type employed (visible, infrared, or fused) has the most impact on the fire segmentation results. In the present work, we evaluate different combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to identify the parameters most relevant to improve the segmentation results. We benchmark them to identify the top-performing ones and compare them to traditional fire segmentation techniques. Finally, we evaluate if the addition of attention modules on the best performing architecture can further improve the segmentation results. To the best of our knowledge, this is the first work that evaluates the impact of the architecture, loss function, and image type in the performance of DL-based wildfire segmentation models.


Sign in / Sign up

Export Citation Format

Share Document