scholarly journals A Review on Medical Image Super Resolution with Application of Deep Learning

2021 ◽  
Vol 7 (2) ◽  
pp. 25-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

Super resolution problems are often discussed in medical imaging. The spatial resolution of medical images is insufficient due to limitations such as image acquisition time, low radiation dose or hardware limitations. Various super-resolution methods have been proposed to solve these problems, such as optimization or learning-based approaches. Recently, deep learning methodologies have become a thriving technology and are evolving at an exponential rate. We believe we need to write a review to illustrate the current state of deep learning in super-resolution medical imaging. In this article, we provide an overview of image resolution and the deep learning introduced in super resolution. This document describes super resolution for single images versus super resolution for multiple images, evaluation metrics and loss functions.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 12319-12327 ◽  
Author(s):  
Shengxiang Zhang ◽  
Gaobo Liang ◽  
Shuwan Pan ◽  
Lixin Zheng

Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1418
Author(s):  
Yue Yu ◽  
Kun She ◽  
Jinhua Liu

Medical imaging is widely used in medical diagnosis. The low-resolution image caused by high hardware cost and poor imaging technology leads to the loss of relevant features and even fine texture. Obtaining high-quality medical images plays an important role in disease diagnosis. A surge of deep learning approaches has recently demonstrated high-quality reconstruction for medical image super-resolution. In this work, we propose a light-weight wavelet frequency separation attention network for medical image super-resolution (WFSAN). WFSAN is designed with separated-path for wavelet sub-bands to predict the wavelet coefficients, considering that image data characteristics are different in the wavelet domain and spatial domain. In addition, different activation functions are selected to fit the coefficients. Inputs comprise approximate sub-bands and detail sub-bands of low-resolution wavelet coefficients. In the separated-path network, detail sub-bands, which have more sparsity, are trained to enhance high frequency information. An attention extension ghost block is designed to generate the features more efficiently. All results obtained from fusing layers are contracted to reconstruct the approximate and detail wavelet coefficients of the high-resolution image. In the end, the super-resolution results are generated by inverse wavelet transform. Experimental results show that WFSAN has competitive performance against state-of-the-art lightweight medical imaging methods in terms of quality and quantitative metrics.


Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


Author(s):  
A. Valli Bhasha ◽  
B. D. Venkatramana Reddy

The image super-resolution methods with deep learning using Convolutional Neural Network (CNN) have been producing admirable advancements. The proposed image resolution model involves the following two main analyses: (i) analysis using Adaptive Discrete Wavelet Transform (ADWT) with Deep CNN and (ii) analysis using Non-negative Structured Sparse Representation (NSSR). The technique termed as NSSR is used to recover the high-resolution (HR) images from the low-resolution (LR) images. The experimental evaluation involves two phases: Training and Testing. In the training phase, the information regarding the residual images of the dataset are trained using the optimized Deep CNN. On the other hand, the testing phase helps to generate the super resolution image using the HR wavelet subbands (HRSB) and residual images. As the main novelty, the filter coefficients of DWT are optimized by the hybrid Fire Fly-based Spotted Hyena Optimization (FF-SHO) to develop ADWT. Finally, a valuable performance evaluation on the two benchmark hyperspectral image datasets confirms the effectiveness of the proposed model over the existing algorithms.


2021 ◽  
Vol 7 (3) ◽  
pp. 22-29
Author(s):  
Kajol Singh ◽  
Manish Saxena

The images captured through a camera usually belong to over or under exposed conditions. The reason may be inappropriate lighting conditions or camera resolution. Hence, it is of utmost importance to have a few enhancement techniques that could make these artefacts look better. Hence, the primary objective pertaining to the adjustment and enhancement techniques is to enhance the characteristics of an image. The initial numeric values related to an image get distorted when an image is enhanced. Therefore, enhancement techniques should be designed in such a way that the image quality isn’t compromised. This research work is focused on proposed a network design for deep convolution neural networks for application of super resolution techniques. To improve the complexity of existing techniques this work is intended towards network designs, different filter size and CNN architecture. The CNN model is most effective model for detection and segmentation in image. This model will improve the efficiency of medical image reconstruction from LR to HR. The proposed model showed its efficiency not only PET medical images but also on retinal database and achieved advance results as compared to existing works.


2018 ◽  
Vol 26 (18) ◽  
pp. 22773 ◽  
Author(s):  
Zhouzhou Niu ◽  
Jianhong Shi ◽  
Lei Sun ◽  
Yan Zhu ◽  
Jianping Fan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document