scholarly journals Magnetic Barkhausen Noise Transient Analysis for Microstructure Evolution Characterization with Tensile Stress in Elastic and Plastic Status

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8310
Author(s):  
Jia Liu ◽  
GuiYun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
QianHang Liu ◽  
...  

Stress affects the microstructure of the material to influence the durability and service life of the components. However, the previous work of stress measurement lacks quantification of the different variations in time and spatial features of micromagnetic properties affected by stress in elastic and plastic ranges, as well as the evolution of microstructure. In this paper, microstructure evolution under stress in elastic and plastic ranges is evaluated by magnetic Barkhausen noise (MBN) transient analysis. Based on a J-A model, the duration and the intensity are the eigenvalues for MBN transient analysis to quantify transient size and number of Barkhausen events under stress. With the observation of domain wall (DW) distribution and microstructure, the correlation between material microstructure and MBN transient eigenvalues is investigated to verify the ability of material status evaluation on the microscopic scale of the method. The results show that the duration and the intensity have different change trends in elastic and plastic ranges. The eigenvalue fusion of the duration and intensity distinguishes the change in microstructure under the stress in elastic and plastic deformation. The appearance of grain boundary (GB) migration and dislocation under the stress in the plastic range makes the duration and the intensity higher on the GB than those inside the grain. Besides, the reproducibility of the proposed method is investigated by evaluating microstructure evolution for silicon steel sheet and Q235 steel sheet. The proposed method investigates the correlation between the microstructure and transient micromagnetic properties, which has the potential for stress evaluation in elastic and plastic ranges for industrial materials.

2010 ◽  
Vol 21 (5) ◽  
pp. 055703 ◽  
Author(s):  
Ping Wang ◽  
Shougao Zhu ◽  
Gui Yun Tian ◽  
Haitao Wang ◽  
John Wilson ◽  
...  

2020 ◽  
Vol 62 (7) ◽  
pp. 416-421
Author(s):  
T Kaleli ◽  
C Hakan Gür

Management of the residual stress state is vital for the design and production stages of carburised components in order to satisfy the technical requirements related to performance, fatigue behaviour and useful lifetime. This enforces the use of practical, reliable and time- and cost-effective stress measurement methods by manufacturers. This study aims to investigate the efficiency of the magnetic Barkhausen noise (MBN) method in rapid non-destructive determination of surface residual stresses in carburised steels. A series of AISI 8620 steel specimens with different residual stress states was prepared by altering the carburising and subsequent tempering parameters. The specimens were characterised through scanning electron microscopy (SEM) investigations and hardness measurements, and the surface residual stresses were determined using both the MBN and X-ray diffraction (XRD) methods. The results show that a good correlation exists between surface residual stress and the parameters derived from the MBN signals.


2017 ◽  
Vol 751 ◽  
pp. 213-218
Author(s):  
Mai Noipitak

The Magnetic Barkhausen Noise (MBN) technique can evaluate the residual stresses in carbon steel and provide information about the relationship between residual stress level and MBN signal. This research work is based on the analysis of MBN signals obtained from carbon steel samples. ASTM A36 and A516 carbon steel were used to vary the residual stress by heat treatment process with 5 conditions: annealing, normalizing, quenching in oil, quenching in water and quenching in salt water. The microstructure and hardness of samples also were varied by these heat treatment processes. Twelve samples (including base materials) were cut to analyze the microstructure and hardness by the microscope and hardness testing machine. Reference materials from each condition were established to represent the MBN signals. The MBN technique was used to evaluate the residual stresses from heat treatment process on each reference material. Then each sample was prepared to tensile specimen. All specimens were applied static tension load below yield point. The load was increased at 25 N/mm2 (MPa) in increment. Each tensile stress level was measurement by MBN technique at 0 and 90 degree of direction of tension axis. The experimental results found that the MBN signal amplitude changed as the condition of heat treatment changed and the relationship between tensile stress and MBN signal showed linear correlation. This research is useful to understand and guide for establishing the reference materials for residual stress measurement by MBN technique.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2350
Author(s):  
Jia Liu ◽  
Guiyun Tian ◽  
Bin Gao ◽  
Kun Zeng ◽  
Yongbing Xu ◽  
...  

Stress is the crucial factor of ferromagnetic material failure origin. However, the nondestructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress.


Sign in / Sign up

Export Citation Format

Share Document