scholarly journals Performance Metric Analysis for a Jamming Detection Mechanism under Collaborative and Cooperative Schemes in Industrial Wireless Sensor Networks

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 178
Author(s):  
Alejandro Cortés-Leal ◽  
Carolina Del-Valle-Soto ◽  
Cesar Cardenas ◽  
Leonardo J. Valdivia ◽  
Jose Alberto Del Puerto-Flores

The emergence of Industry 4.0 technologies, such as the Internet of Things (IoT) and Wireless Sensor Networks (WSN), has prompted a reconsideration of methodologies for network security as well as reducing operation and maintenance costs, especially at the physical layer, where the energy consumption plays an important role. This article demonstrates through simulations and experiments that, while the cooperative scheme is more efficient when a WSN is at normal operating conditions, the collaborative scheme offers more enhanced protection against the aggressiveness of jamming in the performance metrics, thus making it safer, reducing operation and maintenance costs and laying the foundations for jamming mitigation. This document additionally offers an algorithm to detect jamming in real time. Firstly, it examines the characteristics and damages caused by the type of aggressor. Secondly, it reflects on the natural immunity of the WSN (which depends on its node density and a cooperative or collaborative configuration). Finally, it considers the performance metrics, especially those that impact energy consumption during transmission.

2013 ◽  
Vol 4 (2) ◽  
pp. 267-272
Author(s):  
Dr. Deepali Virmani

Optimizing and enhancing network lifetime with minimum energy consumption is the major challenge in field of wireless sensor networks. Existing techniques for optimizing network lifetime are based on exploiting node redundancy, adaptive radio transmission power and topology control. Topology control protocols have a significant impact on network lifetime, available energy and connectivity. In this paper we categorize sensor nodes as strong and weak nodes based on their residual energy as well as operational lifetime and propose a Maximizing Network lifetime Operator (MLTO) that defines cluster based topology control mechanism to enhance network lifetime while guarantying the minimum energy consumption and minimum delay. Extensive simulations in Java-Simulator (J-Sim) show that our proposed operator outperforms the existing protocols in terms of various performance metrics life network lifetime, average delay and minimizes energy utilization.


2021 ◽  
Vol 20 ◽  
pp. 66-73
Author(s):  
Mohammad A. Jassim ◽  
Wesam A. Almobaideen

Wireless Sensor Networks (WSNs) are sink-based networks in which assigned sinks gather all data sensed by lightweight devices that are deployed in natural areas. The sensor devices are energyscarce, therefore, energy-efficient protocols need to be designed for this kind of technology. PowerEfficient GAthering in Sensor Information Systems (PEGASIS) protocol is an energy-efficient data gathering protocol in which a chain is constructed using a greedy approach. This greedy approach has appeared to have unbalanced distances among the nodes which result in unfair energy consumption. Tree traversal algorithms have been used to improve the constructed chain to distribute the energy consumption fairly. In this research, however, a new segmentbased tree traversal approach is introduced to further improve the constructed chain. Our new proposed algorithm first constructs initial segments based on a list of nodes that are sorted according to post-order traversal. Afterwards, it groups these segments and concatenates them one by one according to their location; thus, our proposed approach uses location-awareness to construct a single balanced chain in order to use it for the data gathering process. This approach has been evaluated under various numbers of sensor devices in the network field with respect to various crucial performance metrics. It is shown in our conducted simulation results that our proposed segment-based chain construction approach produces shorter chains and shorter transmission ranges which as a result has improved the overall energy consumption per round, network lifetime, and end-to-end delay.


2017 ◽  
Vol 26 (1) ◽  
pp. 17-28
Author(s):  
Mohammed Saad Talib

Energy in Wireless Sensor networks (WSNs) represents an essential factor in designing, controlling and operating the sensor networks. Minimizing the consumed energy in WSNs application is a crucial issue for the network effectiveness and efficiency in terms of lifetime, cost and operation. Number of algorithms and protocols were proposed and implemented to decrease the energy consumption. Principally, WSNs operate with battery-powered sensors. Since Sensor's batteries have not been easily recharge.  Therefore, prediction of the WSN represents a significant concern. Basically, the network failure occurs due to the inefficient sensor's energy. MAC protocols in WSNs achieved low duty-cycle by employing periodic sleep and wakeup. Predictive Wakeup MAC (PW-MAC) protocol was made use of the asynchronous duty cycling. It reduces the consumption of the node energy by allowing the senders to predict the receiver′s wakeup time. The WSN must be applied in an efficient manner to utilize the sensor nodes and their energy to ensure effective network throughput. To ensure energy efficiency the sensors' duty cycles must be adjusted appropriately to meet the network traffic demands. The energy consumed in each node due to its switching between the active and idle states was also estimated. The sensors are assumed to be randomly deployed. This paper aims to improve the randomly deployed network lifetime by scheduling the effects of transmission, reception and sleep states on the energy consumption of the sensor nodes. Results for these states with much performance metrics were also studied and discussed.   


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jian Chen ◽  
Jie Jia ◽  
Enliang Dai ◽  
Yingyou Wen ◽  
Dazhe Zhao

Link scheduling is important for reliable data communication in wireless sensor networks. Previous works mainly focus on how to find the minimum scheduling length but ignore the impact of energy consumption. In this paper, we integrate them together and solve them by multiobjective genetic algorithms. As a contribution, by jointly modeling the route selection and interference-free link scheduling problem, we give a systematical analysis on the relationship between link scheduling and energy consumption. Considering the specific many-to-one communication nature of WSNs, we propose a novel link scheduling scheme based on NSGA-II (Non-dominated Sorting Genetic Algorithm II). Our approach aims to search the optimal routing tree which satisfies the minimum scheduling length and energy consumption for wireless sensor networks. To achieve this goal, the solution representation based on the routing tree, the genetic operations including tree based recombination and mutation, and the fitness evaluation based on heuristic link scheduling algorithm are well designed. Extensive simulations demonstrate that our algorithm can quickly converge to the Pareto optimal solution between the two performance metrics.


Wireless Sensor Networks (WSN) has turned out to be raising field in research and significant part in the everyday universe of data computing. WSN are initially conveyed in military, overwhelming mechanical applications and, later reached out to the lighter applications, for example, shopper WSN applications. The primary objective of this paper is to diminish energy consumption in wireless sensor networks utilizing energy productive routing protocols (i.e., Modified HEED). To test the presentation of proposed routing protocols through simulations utilizing Network Simulator 2 (NS2.35) and to contrast and existing routing protocols dependent on performance metrics, for example, packet delivery ratio, throughput, energy consumption, overhead and start to finish delay


2018 ◽  
Vol 16 (1/2) ◽  
pp. 59-80 ◽  
Author(s):  
Moufida Maimour

Multipath routing holds a great potential to provide sufficient bandwidth to a plethora of applications in wireless sensor networks. In this paper, we consider the problem of interference that can significantly affect the expected performances. We focus on the performance evaluation of the iterative paths discovery approach as opposed to the traditional concurrent multipath routing. Five different variants of multipath protocols are simulated and evaluated using different performance metrics. We mainly show that the iterative approach allows better performances when used jointly with an interference-aware metric or when an interference-zone marking strategy is employed. This latter appears to exhibit the best performances in terms of success ratio, achieved throughput, control messages overhead as well as energy consumption.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Author(s):  
Abdelhady M. Naguib ◽  
Shahzad Ali

Background: Many applications of Wireless Sensor Networks (WSNs) require awareness of sensor node’s location but not every sensor node can be equipped with a GPS receiver for localization, due to cost and energy constraints especially for large-scale networks. For localization, many algorithms have been proposed to enable a sensor node to be able to determine its location by utilizing a small number of special nodes called anchors that are equipped with GPS receivers. In recent years a promising method that significantly reduces the cost is to replace the set of statically deployed GPS anchors with one mobile anchor node equipped with a GPS unit that moves to cover the entire network. Objectives: This paper proposes a novel static path planning mechanism that enables a single anchor node to follow a predefined static path while periodically broadcasting its current location coordinates to the nearby sensors. This new path type is called SQUARE_SPIRAL and it is specifically designed to reduce the collinearity during localization. Results: Simulation results show that the performance of SQUARE_SPIRAL mechanism is better than other static path planning methods with respect to multiple performance metrics. Conclusion: This work includes an extensive comparative study of the existing static path planning methods then presents a comparison of the proposed mechanism with existing solutions by doing extensive simulations in NS-2.


Author(s):  
Chinedu Duru ◽  
Neco Ventura ◽  
Mqhele Dlodlo

Background: Wireless Sensor Networks (WSNs) have been researched to be one of the ground-breaking technologies for the remote monitoring of pipeline infrastructure of the Oil and Gas industry. Research have also shown that the preferred deployment approach of the sensor network on pipeline structures follows a linear array of nodes, placed a distance apart from each other across the infrastructure length. The linear array topology of the sensor nodes gives rise to the name Linear Wireless Sensor Networks (LWSNs) which over the years have seen themselves being applied to pipelines for effective remote monitoring and surveillance. This paper aims to investigate the energy consumption issue associated with LWSNs deployed in cluster-based fashion along a pipeline infrastructure. Methods: Through quantitative analysis, the study attempts to approach the investigation conceptually focusing on mathematical analysis of proposed models to bring about conjectures on energy consumption performance. Results: From the derived analysis, results have shown that energy consumption is diminished to a minimum if there is a sink for every placed sensor node in the LWSN. To be precise, the analysis conceptually demonstrate that groups containing small number of nodes with a corresponding sink node is the approach to follow when pursuing a cluster-based LWSN for pipeline monitoring applications. Conclusion: From the results, it is discovered that energy consumption of a deployed LWSN can be decreased by creating groups out of the total deployed nodes with a sink servicing each group. In essence, the smaller number of nodes each group contains with a corresponding sink, the less energy consumed in total for the entire LWSN. This therefore means that a sink for every individual node will attribute to minimum energy consumption for every non-sink node. From the study, it can be concurred that energy consumption of a LWSN is inversely proportional to the number of sinks deployed and hence the number of groups created.


Sign in / Sign up

Export Citation Format

Share Document