scholarly journals Dynamic Model Averaging in Economics and Finance with fDMA: A Package for R

Signals ◽  
2020 ◽  
Vol 1 (1) ◽  
pp. 47-99
Author(s):  
Krzysztof Drachal

The described R package allows to estimate Dynamic Model Averaging (DMA), Dynamic Model Selection (DMS) and Median Probability Model. The original methods, and additionally, some selected modifications of these methods are implemented. For example the user can choose between recursive moment estimation and exponentially moving average for variance updating in the base DMA. Moreover, inclusion probabilities can be computed in a way using “Google Trends” data. The code is written with respect to minimise the computational burden, which is quite an obstacle for DMA algorithm if numerous variables are used. For example, this package allows for parallel computations and implementation of the Occam’s window approach. However, clarity and readability of the code, and possibility for an R-familiar user to make his or her own small modifications in reasonably small time and with low effort are also taken under consideration. Except that, some alternative (benchmark) forecasts can also be quickly performed within this package. Indeed, this package is designed in a way that is hoped to be especially useful for practitioners and researchers in economics and finance.

2020 ◽  
Vol 42 (1) ◽  
pp. 37-103
Author(s):  
Hardik A. Marfatia

In this paper, I undertake a novel approach to uncover the forecasting interconnections in the international housing markets. Using a dynamic model averaging framework that allows both the coefficients and the entire forecasting model to dynamically change over time, I uncover the intertwined forecasting relationships in 23 leading international housing markets. The evidence suggests significant forecasting interconnections in these markets. However, no country holds a constant forecasting advantage, including the United States and the United Kingdom, although the U.S. housing market's predictive power has increased over time. Evidence also suggests that allowing the forecasting model to change is more important than allowing the coefficients to change over time.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Siqi Xu ◽  
Yifeng Zhang ◽  
Xiaodan Chen

Although energy-related factors, such as energy intensity and energy consumption, are well recognized as major drivers of carbon dioxide emission in China, little is known about the time-varying impacts of other macrolevel nonenergy factors on carbon emission, especially those from macroeconomic, financial, household, and technology progress indicators in China. This paper contributes to the literature by investigating the time-varying predictive ability of 15 macrolevel indicators for China’s carbon dioxide emission from 1982 to 2017 with a dynamic model averaging (DMA) method. The empirical results show that, firstly, the explanatory power of each nonenergy predictor changes significantly with time and no predictor has a stable positive/negative impact on China’s carbon emissions throughout the whole sample period. Secondly, all these predictors present a distinct predictive ability for carbon emission in China. The proportion of industry production in GDP (IP) shows the greatest predictive power, while the proportion of FDI in GDP has the smallest forecasting ability. Interestingly, those Chinese household features, such as Engel’s coefficient and household savings rate, play very important roles in the prediction of China’s carbon emission. In addition, we find that IP are losing its predictive power in recent years, while the proportion of value-added of the service sector in GDP presents not only a leading forecasting weight, but a continuous increasing prediction power in recent years. Finally, the dynamic model averaging (DMA) method can produce the most accurate forecasts of carbon emission in China compared to other commonly used forecasting methods.


Sign in / Sign up

Export Citation Format

Share Document