scholarly journals A Testbed for GNSS-Based Positioning and Navigation Technologies in Smart Cities: The HANSEL Project

Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1219-1241
Author(s):  
Alex Minetto ◽  
Fabio Dovis ◽  
Andrea Vesco ◽  
Miquel Garcia-Fernandez ◽  
Àlex López-Cruces ◽  
...  

In urban contexts, the increasing density of electronic devices equipped with Global Navigation Satellite System (GNSS) receivers and complementary positioning technologies is attracting research and development efforts devoted to an improvement of the quality of life towards the smart city paradigm. Vehicular and pedestrian positioning and navigation capabilities are among the major drivers for innovation in this process. Ultra-low-cost electronics such as smartphones and Internet of Things (IoT) sensors aim at providing accurate and reliable positioning solutions through a set of promising solutions. Among these, snapshot positioning allows to remotely perform the post-processing of GNSS signals in IoT sensor networks while Wi-Fi™ ranging and cooperative positioning provide auxiliary anchors of opportunity to enhance indoor/outdoor positioning capabilities. This paper presents an innovative platform to perform a centralised testing and assessment of such positioning and navigation technologies along with a set of results obtained in the context of the European project HANSEL, by relying on current network technologies and infrastructures (i.e., Wi-Fi™ and cellular connectivity).

2018 ◽  
Vol 44 (2) ◽  
pp. 36-44 ◽  
Author(s):  
Massimiliano Pepe

In recent years, the use of low cost GNSS receivers is becoming widespread due to their increasing performance in the spatial positioning, flexibility, ease of use and really interesting price. In addition, a recent technique of Global Navigation Satellite System (GNSS) survey, called Network Real Time Kinematic (NRTK), allows to obtain to rapid and accurate positioning measurements. The main feature of this approach is to use the raw measurements obtained and stored from a network of Continuously Operating Reference Stations (CORS) in order to generate more reliable error models that can mitigate the distance-dependent errors within the area covered by the CORS. Also, considering the huge potential of this GNSS positioning system, the purpose of this paper is to analyze and investigate the performance of the NTRK approach using a low cost GNSS receiver, in stop-and-go kinematic technique. By several case studies it was shown that, using a low cost RTK board for Arduino environment, a smartphone with open source application for Android and the availability of data correction from CORS service, a quick and accurate positioning can be obtained. Because the measures obtained in this way are quite noisy and, more in general, increasing with the baseline, by a simple and suitable statistic treatment, it was possible to increase the quality of the measure. In this way, this low cost architecture could be applied in many geomatics fields. In addition to presenting the main aspects of the NTRK infrastructure and a review of several types of correction, a general workflow in order to obtain quality data in NRTK mode, regardless of the type of GNSS receiver (multi constellations, single or many frequencies, etc.) is discussed.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4375
Author(s):  
Veton Hamza ◽  
Bojan Stopar ◽  
Tomaž Ambrožič ◽  
Goran Turk ◽  
Oskar Sterle

Global Navigation Satellite System (GNSS) technology is widely used for geodetic monitoring purposes. However, in cases where a higher risk of receiver damage is expected, geodetic GNSS receivers may be considered too expensive to be used. As an alternative, low-cost GNSS receivers that are cheap, light, and prove to be of adequate quality over short baselines, are considered. The main goal of this research is to evaluate the positional precision of a multi-frequency low-cost instrument, namely, ZED-F9P with u-blox ANN-MB-00 antenna, and to investigate its potential for displacement detection. We determined the positional precision within static survey, and the displacement detection within dynamic survey. In both cases, two baselines were set, with the same rover point equipped with a low-cost GNSS instrument. The base point of the first baseline was observed with a geodetic GNSS instrument, whereas the second baseline was observed with a low-cost GNSS instrument. The results from static survey for both baselines showed comparable results for horizontal components; the precision was on a level of 2 mm or better. For the height component, the results show a better performance of low-cost instruments. This may be a consequence of unknown antenna calibration parameters for low-cost GNSS antenna, while statistically significant coordinates of rover points were obtained from both baselines. The difference was again more significant in the height component. For the displacement detection, a device was used that imposes controlled movements with sub-millimeter accuracy. Results, obtained on a basis of 30-min sessions, show that low-cost GNSS instruments can detect displacements from 10 mm upwards with a high level of reliability. On the other hand, low-cost instruments performed slightly worse as far as accuracy is concerned.


2021 ◽  
Author(s):  
Alex Minetto ◽  
Maria Chiara Bello ◽  
Fabio Dovis

<div>In recent years positioning and navigation capabilities in mobile devices have become essential to the evergrowing number of position-related smart applications. Global Navigation Satellite System (GNSS) constitutes the provider for geo-localization, therefore consumer-grade, embedded GNSS receivers have become ubiquitous in mobile smart devices. Among these, smartphones play a dominant role in enabling such modern services based on position information. However, GNSS positioning shows several weaknesses in urban contexts where mobile smart devices are massively diffused. Indeed, the limited sky visibility and multipath scattering induced by buildings severely threat the quality of the final solution. Two main ingredients can enable innovative collaborative strategies capable to increase the robustness of GNSS navigation: The availability of raw GNSS measurements which have been recently disclosed in ultra-low cost smartphone chipsets and the ubiquitous connectivity provided by modern low-latency, network infrastructures allowing for near-real-time exchange of data. This work presents the architecture of a Proof Of Concept designed to demonstrate the feasibility of a GNSS-only Cooperative Positioning among networked smartphones equipped with GNSS receivers. The test campaign presented in this work assessed the feasibility of the approach over 4G/LTE network connectivity and an average accuracy improvement over the 40%.</div>


2013 ◽  
Vol 341-342 ◽  
pp. 614-620
Author(s):  
Qiang Chang ◽  
Qun Li ◽  
Hong Tao Hou ◽  
Xiang Hui Zeng

Global navigation satellite system (GNSS)-like the Global Positioning System (GPS) and the future Chinese Beidou system-can deliver very good position estimates under optimum conditions. However, especially in critical positioning scenarios like urban canyons or indoor environments the performance loss would be very high or GNSS based positioning is even not possible. Based on the concept of Cooperative Positioning in acquiring real-time positioning information of mobile robots, GNSS Peer-to-Peer Cooperative Positioning (P2P-CP) technology is proposed to overcome the shortage of GNSS positioning. Terrestrial ranging and communication modular are equipped with GNSS receivers to construct real-time CP network. The terrestrial ranging and communication modular respectively used for distance measurement and communication between nearby GNSS receivers, distributed algorithms are applied to fuse pseudorange and neighbors nodes distance to calculate the nodes position. Current research results of GNSS CP show that this new positioning strategy gets equal or better precision with less time cost compared with Assisted GNSS (AGNSS).


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Tae-Suk Bae ◽  
Minho Kim

Recently, an accurate positioning has become the kernel of autonomous navigation with the rapid growth of drones including mapping purpose. The Network-based Real-time Kinematic (NRTK) system was predominantly used for precision positioning in many fields such as surveying and agriculture, mostly in static mode or low-speed operation. The NRTK positioning, in general, shows much better performance with the fixed integer ambiguities. However, the success rate of the ambiguity resolution is highly dependent on the ionospheric condition and the surrounding environment of Global Navigation Satellite System (GNSS) positioning, which particularly corresponds to the low-cost GNSS receivers. We analyzed the effects of the ionospheric conditions on the GNSS NRTK, as well as the possibility of applying the mobile NRTK to drone navigation for mapping. Two NRTK systems in operation were analyzed during a period of high ionospheric conditions, and the accuracy and the performance were compared for several operational cases. The test results show that a submeter accuracy is available even with float ambiguity under a favorable condition (i.e., visibility of the satellites as well as stable ionosphere). We still need to consider how to deal with ionospheric disturbances which may prevent NRTK positioning.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5552
Author(s):  
Daniel Janos ◽  
Przemysław Kuras

Positioning with low-cost GNSS (Global Navigation Satellite System) receivers is becoming increasingly popular in many engineering applications. In particular, dual-frequency receivers, which receive signals of all available satellite systems, offer great possibilities. The main objective of this research was to evaluate the accuracy of a position determination using low-cost receivers in different terrain conditions. The u-blox ZED-F9P receiver was used for testing, with the satellite signal supplied by both a dedicated u-blox ANN-MB-00 low-cost patch antenna and the Leica AS10 high-precision geodetic one. A professional Leica GS18T geodetic receiver was used to acquire reference satellite data. In addition, on the prepared test base, observations were made using the Leica MS50 precise total station, which provided higher accuracy and stability of measurement than satellite positioning. As a result, it was concluded that the ZED-F9P receiver equipped with a patch antenna is only suitable for precision measurements in conditions with high availability of open sky. However, the configuration of this receiver with a geodetic-grade antenna significantly improves the quality of results, beating even professional geodetic equipment. In most cases of the partially obscured horizon, a high precision positioning was obtained, making the ZED-F9P a valuable alternative to the high-end geodetic receivers in many applications.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4302 ◽  
Author(s):  
Paolo Dabove ◽  
Vincenzo Di Pietra

Global Navigation Satellite System (GNSS) positioning is currently a common practice thanks to the development of mobile devices such as smartphones and tablets. The possibility to obtain raw GNSS measurements, such as pseudoranges and carrier-phase, from these instruments has opened new windows towards precise positioning using smart devices. This work aims to demonstrate the positioning performances in the case of a typical single-base Real-Time Kinematic (RTK) positioning while considering two different kinds of multi-frequency and multi-constellation master stations: a typical geodetic receiver and a smartphone device. The results have shown impressive performances in terms of precision in both cases: with a geodetic receiver as the master station, the reachable precisions are several mm for all 3D components while if a smartphone is used as the master station, the best results can be obtained considering the GPS+Galileo constellations, with a precision of about 2 cm both for 2D and Up components in the case of L1+L5 frequencies, or 3 cm for 2D components and 2 cm for the Up, in the case of an L1 frequency. Moreover, it has been demonstrated that it is not feasible to reach the phase ambiguities fixing: despite this, the precisions are still good and also the obtained 3D accuracies of positioning solutions are less than 1 m. So, it is possible to affirm that these results are very promising in the direction of cooperative positioning using smartphone devices.


2021 ◽  
Author(s):  
Alex Minetto ◽  
Maria Chiara Bello ◽  
Fabio Dovis

<div>In recent years positioning and navigation capabilities in mobile devices have become essential to the evergrowing number of position-related smart applications. Global Navigation Satellite System (GNSS) constitutes the provider for geo-localization, therefore consumer-grade, embedded GNSS receivers have become ubiquitous in mobile smart devices. Among these, smartphones play a dominant role in enabling such modern services based on position information. However, GNSS positioning shows several weaknesses in urban contexts where mobile smart devices are massively diffused. Indeed, the limited sky visibility and multipath scattering induced by buildings severely threat the quality of the final solution. Two main ingredients can enable innovative collaborative strategies capable to increase the robustness of GNSS navigation: The availability of raw GNSS measurements which have been recently disclosed in ultra-low cost smartphone chipsets and the ubiquitous connectivity provided by modern low-latency, network infrastructures allowing for near-real-time exchange of data. This work presents the architecture of a Proof Of Concept designed to demonstrate the feasibility of a GNSS-only Cooperative Positioning among networked smartphones equipped with GNSS receivers. The test campaign presented in this work assessed the feasibility of the approach over 4G/LTE network connectivity and an average accuracy improvement over the 40%.</div>


2021 ◽  
Vol 65 (02) ◽  
pp. 189-204
Author(s):  
Franc Dimc ◽  
Polona Pavlovčič Prešeren ◽  
Matej Bažec

This paper presents the results of a vulnerability test of several geodetic Global Navigation Satellite System (GNSS) receivers in case of intentional signal interference in the frequency L1 for GPS (Global Positioning System). Nine instruments from different manufacturers (i.e., Leica Geosystems AG, Trimble Inc., Javad GNSS) were tested. The test was based on static and kinematic jamming. A static scenario with three-minute interruptions was followed by experiments with a stationary jammer located at distances from 10 m to 160 m from the receivers. For short-term kinematic interference, the jammer was installed in the vehicle, which passed the GNSS instruments at different speeds. An analysis of different scenarios showed that the jammer interrupted GPS but not GLONASS signals in certain situations. Since Galileo was not nominally operational at the time of the July 2019 measurements, only GPS and GLONASS were eligible for the study. The geodetic GNSS instruments reacted to the interruptions with a decreased signal-to-noise-ratio (SNR) and either with a complete inability to determine the code/phase position or with an incorrect calculation of phase ambiguities (initialization), which also affected the quality of the positioning. The proximity of the jammer played the most significant role in the complete inability to receive the signal; however, for the incorrect positioning longer duration of jamming was also a reason.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 814 ◽  
Author(s):  
Matej Bažec ◽  
Franc Dimc ◽  
Polona Pavlovčič-Prešeren

Understanding the factors that might intentionally influence the reception of global navigation satellite system (GNSS) signals can be a challenging topic today. The focus of this research is to evaluate the vulnerability of geodetic GNSS receivers under the use of a low-cost L1/E1 frequency jammer. A suitable area for testing was established in Slovenia. Nine receivers from different manufacturers were under consideration in this study. While positioning, intentional 3-minute jammings were performed by a jammer that was located statically at different distances from receivers. Furthermore, kinematic disturbances were performed using a jammer placed in a vehicle that passed the testing area at various speeds. An analysis of different scenarios indicated that despite the use of an L1/E1 jammer, the GLONASS (Russian: Globalnaya Navigatsionnaya Sputnikovaya Sistema) and Galileo signals were also affected, either due to the increased carrier-to-noise-ratio (C/N0) or, in the worst cases, by a loss-of-signal. A jammer could substantially affect the position, either with a lack of any practical solution or even with a wrong position. Maximal errors in the carrier-phase positions, which should be considered a concern for geodesy, differed by a few metres from the exact solution. The factor that completely disabled the signal reception was the proximity of a jammer, regardless of its static or kinematic mode.


Sign in / Sign up

Export Citation Format

Share Document