Peer-to-Peer Cooperative Positioning between GNSS Receivers

2013 ◽  
Vol 341-342 ◽  
pp. 614-620
Author(s):  
Qiang Chang ◽  
Qun Li ◽  
Hong Tao Hou ◽  
Xiang Hui Zeng

Global navigation satellite system (GNSS)-like the Global Positioning System (GPS) and the future Chinese Beidou system-can deliver very good position estimates under optimum conditions. However, especially in critical positioning scenarios like urban canyons or indoor environments the performance loss would be very high or GNSS based positioning is even not possible. Based on the concept of Cooperative Positioning in acquiring real-time positioning information of mobile robots, GNSS Peer-to-Peer Cooperative Positioning (P2P-CP) technology is proposed to overcome the shortage of GNSS positioning. Terrestrial ranging and communication modular are equipped with GNSS receivers to construct real-time CP network. The terrestrial ranging and communication modular respectively used for distance measurement and communication between nearby GNSS receivers, distributed algorithms are applied to fuse pseudorange and neighbors nodes distance to calculate the nodes position. Current research results of GNSS CP show that this new positioning strategy gets equal or better precision with less time cost compared with Assisted GNSS (AGNSS).

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4302 ◽  
Author(s):  
Paolo Dabove ◽  
Vincenzo Di Pietra

Global Navigation Satellite System (GNSS) positioning is currently a common practice thanks to the development of mobile devices such as smartphones and tablets. The possibility to obtain raw GNSS measurements, such as pseudoranges and carrier-phase, from these instruments has opened new windows towards precise positioning using smart devices. This work aims to demonstrate the positioning performances in the case of a typical single-base Real-Time Kinematic (RTK) positioning while considering two different kinds of multi-frequency and multi-constellation master stations: a typical geodetic receiver and a smartphone device. The results have shown impressive performances in terms of precision in both cases: with a geodetic receiver as the master station, the reachable precisions are several mm for all 3D components while if a smartphone is used as the master station, the best results can be obtained considering the GPS+Galileo constellations, with a precision of about 2 cm both for 2D and Up components in the case of L1+L5 frequencies, or 3 cm for 2D components and 2 cm for the Up, in the case of an L1 frequency. Moreover, it has been demonstrated that it is not feasible to reach the phase ambiguities fixing: despite this, the precisions are still good and also the obtained 3D accuracies of positioning solutions are less than 1 m. So, it is possible to affirm that these results are very promising in the direction of cooperative positioning using smartphone devices.


Smart Cities ◽  
2020 ◽  
Vol 3 (4) ◽  
pp. 1219-1241
Author(s):  
Alex Minetto ◽  
Fabio Dovis ◽  
Andrea Vesco ◽  
Miquel Garcia-Fernandez ◽  
Àlex López-Cruces ◽  
...  

In urban contexts, the increasing density of electronic devices equipped with Global Navigation Satellite System (GNSS) receivers and complementary positioning technologies is attracting research and development efforts devoted to an improvement of the quality of life towards the smart city paradigm. Vehicular and pedestrian positioning and navigation capabilities are among the major drivers for innovation in this process. Ultra-low-cost electronics such as smartphones and Internet of Things (IoT) sensors aim at providing accurate and reliable positioning solutions through a set of promising solutions. Among these, snapshot positioning allows to remotely perform the post-processing of GNSS signals in IoT sensor networks while Wi-Fi™ ranging and cooperative positioning provide auxiliary anchors of opportunity to enhance indoor/outdoor positioning capabilities. This paper presents an innovative platform to perform a centralised testing and assessment of such positioning and navigation technologies along with a set of results obtained in the context of the European project HANSEL, by relying on current network technologies and infrastructures (i.e., Wi-Fi™ and cellular connectivity).


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
Pedro A. Roncagliolo ◽  
Javier G. García ◽  
Carlos H. Muravchik

Carrier phase estimation in real-time Global Navigation Satellite System (GNSS) receivers is usually performed by tracking loops due to their very low computational complexity. We show that a careful design of these loops allows them to operate properly in high-dynamics environments, that is, accelerations up to 40 g or more. Their phase and frequency discriminators and loop filter are derived considering the digital nature of the loop inputs. Based on these ideas, we propose a new loop structure named Unambiguous Frequency-Aided Phase-Locked Loop (UFA-PLL). In terms of tracking capacity and noise resistance UFA-PLL has the same advantages of frequently used coupled-loop schemes, but it is simpler to design and to implement. Moreover, it can keep phase lock in situations where other loops cannot. The loop design is completed selecting the correlation time and loop bandwidth that minimize the pull-out probability, without relying on typical rules of thumb. Optimal and efficient ways to smooth the phase estimates are also presented. Hence, high-quality phase measurements—usually exploited in offline and quasistatic applications—become practical for real-time and high-dynamics receivers. Experiments with fixed-point implementations of the proposed loops and actual radio signals are also shown.


2021 ◽  
Vol 13 (4) ◽  
pp. 605
Author(s):  
Fuxin Yang ◽  
Chuanlei Zheng ◽  
Hui Li ◽  
Liang Li ◽  
Jie Zhang ◽  
...  

Continuity is one of the metrics that characterize the required navigation performance of global navigation satellite system (GNSS)-based applications. Data outage due to receiver failure is one of the reasons for continuity loss. Although a multi-receiver configuration can maintain position solutions in case a receiver has data outage, the initialization of the receiver will also cause continuous high-precision positioning performance loss. To maintain continuous high-precision positioning performance of real-time precise point positioning (RT-PPP), we proposed a continuity enhancement method for RT-PPP based on zero-baseline constraint of multi-receiver. On the one hand, the mean time to repair (MTTR) of the multi-receiver configuration is improved to maintain continuous position solutions. On the other hand, the zero-baseline constraint of multi-receiver including between-satellite single-differenced (BSSD) ambiguities, zenith troposphere wet delay (ZWD), and their suitable stochastic models are constructed to achieve instantaneous initialization of back-up receiver. Through static and kinematic experiments based on real data, the effectiveness and robustness of proposed method are evaluated comprehensively. The experiment results show that the relationship including BSSD ambiguities and ZWD between receivers can be determined reliably based on zero-baseline constraint, and the instantaneous initialization can be achieved without high-precision positioning continuity loss in the multi-receiver RT-PPP processing.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2810
Author(s):  
Krzysztof Naus ◽  
Piotr Szymak ◽  
Paweł Piskur ◽  
Maciej Niedziela ◽  
Aleksander Nowak

Undoubtedly, Low-Altitude Unmanned Aerial Vehicles (UAVs) are becoming more common in marine applications. Equipped with a Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) receiver for highly accurate positioning, they perform camera and Light Detection and Ranging (LiDAR) measurements. Unfortunately, these measurements may still be subject to large errors-mainly due to the inaccuracy of measurement of the optical axis of the camera or LiDAR sensor. Usually, UAVs use a small and light Inertial Navigation System (INS) with an angle measurement error of up to 0.5∘ (RMSE). The methodology for spatial orientation angle correction presented in the article allows the reduction of this error even to the level of 0.01∘ (RMSE). It can be successfully used in coastal and port waters. To determine the corrections, only the Electronic Navigational Chart (ENC) and an image of the coastline are needed.


2021 ◽  
Vol 14 (2) ◽  
pp. 105
Author(s):  
Maelckson Bruno Barros Gomes ◽  
André Luis Silva Santos

<p class="04CorpodoTexto">Este artigo tem por objetivo aplicar geotecnologias para obtenção de informações planialtimétricas a fim de avaliar a viabilidade de implantação do campus Centro Histórico/Itaqui-Bacanga do IFMA. Considerando que para realização de levantamento por métodos tradicionais é recomendado que seja realizado o destocamento e a limpeza do terreno previamente, avaliou-se a realização do levantamento planialtimétrico a partir de um par de receptores <em>Global Navigation Satellite System</em> (GNSS) pelo método <em>Real Time Kinematic</em> (RTK) pós processado e também a partir da realização de levantamento fotogramétrico, utilizando aeronave remotamente pilotada (ARP), popularmente conhecida como drone. Esta análise permitiu demonstrar que o aerolevantamento com a ARP pode ser aplicado na concepção inicial de um projeto de engenharia, conforme classificação do Tribunal de Contas da União (TCU) para níveis de precisão, pois obteve-se uma diferença orçamentária de 19% entre os projetos elaborados a partir das duas geotecnologias.</p><div> </div>


2016 ◽  
Vol 12 (03) ◽  
pp. 64
Author(s):  
Haifeng Hu

Abstract—An online automatic disaster monitoring system can reduce or prevent geological mine disasters to protect life and property. Global Navigation Satellite System receivers and the GeoRobot are two kinds of in-situ geosensors widely used for monitoring ground movements near mines. A combined monitoring solution is presented that integrates the advantages of both. In addition, a geosensor network system to be used for geological mine disaster monitoring is described. A complete online automatic mine disaster monitoring system including data transmission, data management, and complex data analysis is outlined. This paper proposes a novel overall architecture for mine disaster monitoring. This architecture can seamlessly integrate sensors for long-term, remote, and near real-time monitoring. In the architecture, three layers are used to collect, manage and process observation data. To demonstrate the applicability of the method, a system encompassing this architecture has been deployed to monitor the safety and stability of a slope at an open-pit mine in Inner Mongolia.


Author(s):  
George K. Chang ◽  
Kiran Mohanraj ◽  
William A. Stone ◽  
Daniel J. Oesch ◽  
Victor (Lee) Gallivan

Intelligent compaction (IC) is an emerging technology with rollers equipped with global navigation satellite system (GNSS), an accelerometer-based measurement system, and an onboard color-coded display for real-time monitoring and compaction control. Paver-mounted thermal profiling (PMTP) is used to monitor asphalt surface temperatures behind a paver with a thermal scanner, and to track paver speeds, stops, and stop durations. Leveraging both IC and PMTP technologies allows for paving and compaction controls in real time, and for executing appropriate adjustments as needed. A case study is used to demonstrate the advantage of using both IC and PMTP over conventional operations. Postconstruction asphalt coring and tests, as well as pavement profile surveys were conducted to provide asphalt density data and pavement smoothness acceptance data for comparison and correlation analysis with IC and PMTP data. The data from 2 days of operations, one without the Material Transfer Vehicle (MTV) and another with the MTV, were analyzed and compared to illustrate the benefits of using IC, PMTP, and MTV for producing quality pavement products. Durability and smoothness are two key construction qualities for agencies and users of hot mix asphalt (HMA) pavements. These two factors also affect the long-term structural and functional pavement performance.


2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.


Sign in / Sign up

Export Citation Format

Share Document