scholarly journals Estimating Soil Water Retention Curve by Inverse Modelling from Combination of In Situ Dynamic Soil Water Content and Soil Potential Data

Soil Systems ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 55 ◽  
Author(s):  
Pinnara Ket ◽  
Chantha Oeurng ◽  
Aurore Degré

Soil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics, and are particularly relevant in the context of irrigation management. Inverse modelling is one of the methods used to parameterize models representing these curves, which are closest to the field reality. The objective of this study is to estimate the soil hydraulic properties through inverse modelling using the HYDRUS-1D code based on soil moisture and potential data acquired in the field. The in situ SWRCs acquired every 30 min are based on simultaneous soil water content and soil water potential measurements with 10HS and MPS-2 sensors, respectively, in five experimental fields. The fields were planted with drip-irrigated lettuces from February to March 2016 in the Chrey Bak catchment located in the Tonlé Sap Lake region, Cambodia. After calibration of the van Genuchten soil water retention model parameters, we used them to evaluate the performance of HYDRUS-1D to predict soil moisture dynamics in the studied fields. Water flow was reasonably well reproduced in all sites covering a range of soil types (loamy sand and loamy soil) with root mean square errors ranging from 0.02 to 0.03 cm3 cm−3.

2009 ◽  
Vol 6 (3) ◽  
pp. 4265-4306 ◽  
Author(s):  
K. Verbist ◽  
W. M. Cornelis ◽  
D. Gabriels ◽  
K. Alaerts ◽  
G. Soto

Abstract. In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in Northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat) independently. Tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between observed soil water content and simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. Model results indicate that the infiltration trench has a significant effect on soil water storage, especially at the base of the trench.


2020 ◽  
Author(s):  
Zampela Pittaki-Chrysodonta ◽  
Per Moldrup ◽  
Bo V. Iversen ◽  
Maria Knadel ◽  
Lis W. de Jonge

<p>The soil water retention curve (SWRC) at the wet part is important for understanding and modeling the water flow and solute transport in the vadose zone. However, direct measurements of SWRC is often laborious and time consuming processes. The Campbell function is a simple method to fit the measured data. The parameters of the Campbell function have been recently proven that can be predicted using visible-near-infrared spectroscopy. However, predicting the SWRC using image spectral data could be an inexpensive and fast method. In this study, 100-cm<sup>3</sup> soil samples from Denmark were included and the soil water content was measured at a soil-water matric potential from pF 1 [log(10)= pF 1] up to pF 3. The anchored Campbell soil-water retention function was selected instead of the original. Specifically, in this function the equation is anchored at the soil-water content at pF 3 (θ<sub>pF3</sub>) instead at the saturated water content. The image spectral data were correlated with the Campbell parameters [θ<sub>pF3</sub>, and the pore size distribution index (Campbell b). The results showed the potential of remote sensing to be used as a fast and alternative method for predicting the SWRC in a large-scale.</p>


2021 ◽  
Author(s):  
Maria Eliza Turek ◽  
Gerard Heuvelink ◽  
Niels Batjes ◽  
Laura Poggio

<p>Soil water content is a key property for modelling the water balance in hydrological, eco-hydrological and agro-hydrological models. Currently available global maps of soil water retention are mostly based on pedotransfer functions applied to maps of other basic soil properties. We developed global maps of the volumetric water content at 10, 33 and 1500 kPa by direct mapping based on soil water content data derived from the WoSIS Soil Profile Database and covariates describing vegetation, terrain morphology, climate, geology and hydrology using the SoilGrids workflow. The preparation of the input soil data consisted of the verification of available volumetric water content data and conversion of gravimetric to volumetric data using measured and estimated bulk density. In total we had 9609, 41082 and 49224 soil water content observations at 10, 33 and 1500 kPa, respectively, and prepared around 200 covariates as candidate predictors. After covariates selection, model tuning and cross-validation and final model fitting for 3D spatial prediction, results were presented for the globe with uncertainty estimation. The results were also compared to other available global maps of water retention to evaluate differences between direct mapping against other types of approaches. Directly developing global maps of soil water content, with associated uncertainty, is a novel approach for this type of properties, and contributes to improving global soil data availability and quality.</p>


Biologia ◽  
2006 ◽  
Vol 61 (19) ◽  
Author(s):  
Andrea Hagyó ◽  
Kálmán Rajkai ◽  
Zoltán Nagy

AbstractWater retention characteristics, rainfall, throughfall and soil water content dynamics were investigated in a low mountain area to compare a forest and a grassland. The soil water retention curve of the topsoil has similar shape in both studied areas, however that of the deeper soil layer shows more difference. We determined the precipitation depth, duration and intensity values of rainfall events. The relationship between rainfall and throughfall depth was described in linear regressions. Interception was calculated as the difference between rainfall and throughfall plus stemflow, assuming stemflow to be 3% of rainfall. Soil water content dynamics show a similar trend in the two vegetation types but the drying is more intensive in the forest in the soil layers deeper than 20 cm during the growing-season.


2021 ◽  
Author(s):  
Sarah Bereswill ◽  
Nicole Rudolph-Mohr ◽  
Sascha E Oswald

Abstract PurposeRhizosphere respiration strongly affects CO2 concentration within vegetated soils and resulting fluxes to the atmosphere. Respiration in the rhizosphere exhibits high spatiotemporal variability that may be linked to root type, but also to small-scale variation of soil water content altering gas transport dynamics in the soil. We address spatiotemporal dynamics of CO2 and O2 concentration in the rhizosphere via non-invasive in-situ imaging.MethodsOptodes sensitive to CO2 and O2 were applied to non-invasively measure in-situ rhizosphere CO2 and O2 concentration of white lupine (Lupinus albus) grown in slab-shaped glass rhizotrons. We monitored CO2 concentration over the course of 16 days at constant water content and also performed a drying-rewetting experiment to explore sensitivity of CO2 and O2 concentration to soil moisture changes. ResultsHotspots of respiration formed around cluster roots and CO2 concentration locally increased to > 20 % pCO2 (CO2 partial pressure). After rewetting the soil, cluster roots consumed available O2 significantly faster compared to non-cluster lateral roots. In wet soil, CO2 accumulation zones extended up to 9.5 mm from the root surface compared to 0.3-1 mm in dry soil.ConclusionResults from this imaging experiment indicate that respiratory activity differs substantially within the root system of a plant individual and that cluster roots are hotspots of respiration. As rhizosphere CO2 and O2 concentration was strongly sensitive to soil water content and its variation, we recommend monitoring the soil water content prior and during the measurement of rhizosphere respiration.


2009 ◽  
Vol 13 (10) ◽  
pp. 1979-1992 ◽  
Author(s):  
K. Verbist ◽  
W. M. Cornelis ◽  
D. Gabriels ◽  
K. Alaerts ◽  
G. Soto

Abstract. In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat) independently. The tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a significant effect on soil-water storage, especially at the base of the trench.


2011 ◽  
Vol 15 (9) ◽  
pp. 2839-2852 ◽  
Author(s):  
S. Manfreda ◽  
T. Lacava ◽  
B. Onorati ◽  
N. Pergola ◽  
M. Di Leo ◽  
...  

Abstract. Characterizing the dynamics of soil moisture fields is a key issue in hydrology, offering a strategy to improve our understanding of complex climate-soil-vegetation interactions. Besides in-situ measurements and hydrological models, soil moisture dynamics can be inferred by analyzing data acquired by sensors on board of airborne and/or satellite platforms. In this work, we investigated the use of the National Oceanic and Atmospheric Administration – Advanced Microwave Sounding Unit-A (NOAA-AMSU-A) radiometer for the remote characterization of soil water content. To this aim, a field measurement campaign, lasted about three months (3 March 2010–18 May 2010), was carried out using a portable time-domain reflectometer (TDR) to get soil water content measures over five different locations within an experimental basin of 32.5 km2, located in the South of Italy. In detail, soil moisture measurements were carried out systematically at the times of satellite overpasses, over two square areas of 400 m2, a triangular area of 200 m2 and two transects of 60 and 170 m, respectively. Each monitored site is characterized by different land covers and soil textures, to account for spatial heterogeneity of land surface. Afterwards, a more extensive comparison (i.e. analyzing a 5 yr data time series) was made using soil moisture simulated by a hydrological model. Measured and modeled soil moisture data were compared with two AMSU-based indices: the Surface Wetness Index (SWI) and the Soil Wetness Variation Index (SWVI). Both time series of indices have been filtered by means of an exponential filter to account for the fact that microwave sensors only provide information at the skin surface. This allowed to understand the ability of each satellite-based index to account for soil moisture dynamics and to understand its performances under different conditions. As a general remark, the comparison shows a higher ability of the filtered SWI to describe the general trend of soil moisture, while the SWVI can capture soil moisture variations with a precision that increases at the higher values of SWVI.


2011 ◽  
Vol 8 (3) ◽  
pp. 5319-5353
Author(s):  
S. Manfreda ◽  
T. Lacava ◽  
B. Onorati ◽  
N. Pergola ◽  
M. Di Leo ◽  
...  

Abstract. Characterizing the dynamics of soil moisture fields is a key issue in hydrology, offering a strategy to improve our understanding of complex climate-soil-vegetation interactions. Apart from in-situ measurements and hydrological models, soil moisture dynamics can be inferred by analyzing data acquired by sensors aboard satellite platforms. In this work, we investigated the use of the National Oceanic and Atmospheric Administration – Advanced Microwave Sounding Unit (NOAA-AMSU) radiometer for the remote characterization of soil water content. To this aim, a field measurement campaign, lasted about three months, was carried out using a portable time-domain reflectometer (TDR) to get soil water content measures over five different locations within an experimental basin of 32.5 km2, located in the South of Italy. In detail, soil moisture measurements have been carried out systematically at the times of satellite overpasses, over two square areas of 400 m2, a triangular area of 200 m2 and two transects of 60 and 170 m, respectively. Each monitored site is characterized by different land covers and soil textures, to account for spatial heterogeneity of land surface. Afterwards, a more extensive comparison (i.e. analyzing a 5-yr data time series) has been made using soil moisture simulated by a hydrological model. Achieved measured and modeled soil moisture data were compared with two AMSU-based indices: the Surface Wetness Index (SWI) and the Soil Wetness Variation Index (SWVI). Both indices have been filtered to account for soil depth by means of an exponential filter. This allowed to understand the ability of each satellite-based index to account for soil moisture dynamics and to understand its performances under different conditions. As a general remark, the comparison shows a higher ability of the filtered SWI to describe the state of the soil, while the SWVI can capture soil moisture variations with a precision that increases at the higher values of SWVI and it may represent a useful and reliable tool to frequently monitor the soil moisture state for flood forecasting purposes.


2021 ◽  
Author(s):  
Isaac Kipkemoi ◽  
Katerina Michaelides ◽  
Rafael Rosolem ◽  
Michael Bliss Singer

Abstract. In drylands, characterised by water scarcity and frequent meteorological droughts, knowledge of soil moisture dynamics and its drivers (evapotranspiration, soil physical properties and the timing and sequencing of precipitation events) is fundamental to understanding changes in water availability to plants and human society, especially under a nonstationary climate. Given the episodic and stochastic nature of rainfall in drylands and the limited availability of data in these regions, we sought to explore what effects the temporal resolution of precipitation data has on soil moisture and how soil moisture distributions might evolve under different scenarios of climate change. Such information is critical for anticipating the impact of a changing climate on dryland communities across the globe, especially those that depend on rainfed agriculture and groundwater wells for drinking water for humans and livestock. A major challenge to understanding soil moisture in response to climate is the availability of precipitation datasets for dryland regions across the globe. Gridded precipitation data may only be available for daily or weekly time periods, even though rainstorms in drylands often occur on much shorter time scales, but it is currently unknown how this timescale mismatch might affect our understanding of soil moisture. Numerical modelling enables retrodiction or prediction of how climate translates into dynamically evolving moisture within the soil profile. It can be used to explore how climate data at different temporal resolutions affect these soil moisture dynamics, as well as to explore the influence of shifts in rainfall characteristics (e.g., storm intensity) under potential scenarios of climate change. This study uses Hydrus 1-D, to investigate the dynamics of soil moisture over a period of decades in response to the same underlying rainfall data resolved at hourly, daily, and weekly resolutions, as well as to step changes in rainfall delivery, which is expected under a warming atmosphere. We parameterised the model using rainfall, evaporative demand, and soils data from the semi-arid Walnut Gulch Experimental Watershed (WGEW) in SE Arizona, but we present the results as a generalized study of how rainfall resolution and shifts in rainfall intensity may affect dryland soil moisture at different depths. Our results indicate that hourly or better rainfall resolution captures the dynamics of soil moisture in drylands, and that critical information on soil water content, moisture availability to vegetation, actual evapotranspiration, and deep percolation of infiltrated water is lost when soil moisture modelling is driven by rainfall data at coarser temporal resolutions (daily, weekly). We further show that modest changes in rainfall intensity dramatically shift soil water content and the overall water balance. These findings are relevant to the prediction of soil moisture for crop yield forecasts, for adaptation to climate-related risks, and for anticipating the challenges of water scarcity and food insecurity in dryland communities around the globe, where available datasets are of low spatial and temporal resolution.


2020 ◽  
Author(s):  
Mateusz Lukowski ◽  
Lukasz Gluba ◽  
Anna Rafalska-Przysucha ◽  
Kamil Szewczak ◽  
Bogusław Usowicz

<p>The soil is a heterogonous substance consists of three phases: solid, gas and liquid, where the latter is mainly water – the natural solvent with very high heat capacity. Due to this physical property and the fact that water is a common substance on our planet, it has a significant impact for stability of the climate on Earth. Another water property, the dielectric constant much higher than in other soil ingredients, is often used to determine soil water content. As an example, the Time Domain Reflectometry (TDR) technique for in situ soil moisture measurements may be mentioned. For soil moisture assessments at global scale, the satellite-based instruments were designed and launched into space, e.g. Soil Moisture and Ocean Salinity (SMOS) or Soil Moisture Active Passive (SMAP). Those satellites are measuring brightness temperature of soil in microwave (L-band) domain. The algorithms that retrieve soil moisture from L-band measurements by nonlinear optimisation engage several parameters such as soil temperature, its roughness and vegetation cover. In the presented work, we introduce a much simpler method that base on three facts: i) a high water heat capacity cause that, during the diurnal night/day cycle, the soil with higher water content cools down and heats up slower than dry soil. This phenomenon was quantified by thermal inertia; ii) brightness temperature is related to the effective temperature of the surface and iii) plants are generally semi-transparent for L-band microwaves, what gives a possibility for probing soil properties underneath vegetation. Due to iii) we assumed that L-band soil albedo (needed in thermal inertia computations) is constant. The proposed approach seems to be reasonable, as both variables, brightness temperature and thermal inertia, strongly depend on soil water content. The method was evaluated using ELBARA (European Space Agency L-band Radiometer) instrument operating at Bubnow test site in Poland. The ELBARA is a directional receiver at 1.4 GHz frequency (the same as received by SMOS satellite), installed on the Earth’s surface, at 6-meter tower. In the years 2016-2019, we conducted 16 field campaigns – we measured surface soil moisture in situ using TDR, and interpolate it to semi-continuous grid using geostatistics. Then, the driest and the wettest points (in space and time) were chosen and assigned to, respectively, maximum and minimum thermal inertia. Basing on that, the model retrieving soil moisture was built, and the other measurements served as validation assembly. Simple regression methods revealed good or moderately good agreement between modelled and measured data. Some outliers, probably induced by meteorological phenomena disturbing stable soil cooling and heating such as rain or wind, have been noticed.</p><p>Research was partially conducted under the project “Water in soil - satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” – BIOSTRATEG strategic R&D programme.</p>


Sign in / Sign up

Export Citation Format

Share Document