scholarly journals Field, Laboratory and Modeling Evidence for Strong Attenuation of a Cr(VI) Plume in a Mudstone Aquifer Due to Matrix Diffusion and Reaction Processes

Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Steven Chapman ◽  
Beth Parker ◽  
Tom Al ◽  
Richard Wilkin ◽  
Diana Cutt ◽  
...  

This study uses a combination of conventional and high resolution field and laboratory methods to investigate processes causing attenuation of a hexavalent chromium (Cr(VI)) plume in sedimentary bedrock at a former industrial facility. Groundwater plume Cr(VI) concentrations decline by more than three orders of magnitude over a 900 m distance down gradient from the site. Internal plume concentrations generally exhibit stable to declining trends due to diffusive and reactive transport in the low permeability matrix as fluxes from the contamination source dissipate due to natural depletion processes and active remediation efforts. The strong attenuation is attributed to diffusion from mobile groundwater in fractures to immobile porewater in the rock matrix, and reactions causing transformation of aqueous Cr(VI) to low-solubility Cr(III) precipitates, confirmed by high spatial resolution rock matrix contaminant concentrations and comparisons with groundwater concentrations from multi-level sampling within the plume. Field characterization data for the fracture network and matrix properties were used to inform 2-D discrete-fracture matrix (DFM) numerical model simulations that quantify attenuation due to diffusion and reaction processes, which show consistency with field datasets, and provide insights regarding future plume conditions. The combination of field, laboratory and modeling evidence demonstrates effects of matrix diffusion and reaction processes causing strong attenuation of a Cr(VI) plume in a sedimentary bedrock aquifer. This approach has important implications for characterization of sites with Cr(VI) contamination for improved site conceptual models and remediation decision-making.

Alergologia ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 7
Author(s):  
Mariana Vieru ◽  
Florin-Dan Popescu ◽  
Laura Haidar ◽  
Carmen Bunu-Panaitescu

Author(s):  
Emily S. Bailey ◽  
Xinye Wang ◽  
Mai-juan Ma ◽  
Guo-lin Wang ◽  
Gregory C. Gray

AbstractInfluenza viruses are an important cause of disease in both humans and animals, and their detection and characterization can take weeks. In this study, we sought to compare classical virology techniques with a new rapid microarray method for the detection and characterization of a very diverse, panel of animal, environmental, and human clinical or field specimens that were molecularly positive for influenza A alone (n = 111), influenza B alone (n = 3), both viruses (n = 13), or influenza negative (n = 2) viruses. All influenza virus positive samples in this study were first subtyped by traditional laboratory methods, and later evaluated using the FluChip-8G Insight Assay (InDevR Inc. Boulder, CO) in laboratories at Duke University (USA) or at Duke Kunshan University (China). The FluChip-8G Insight multiplexed assay agreed with classical virologic techniques 59 (54.1%) of 109 influenza A-positive, 3 (100%) of the 3 influenza B-positive, 0 (0%) of 10 both influenza A- and B-positive samples, 75% of 24 environmental samples including those positive for H1, H3, H7, H9, N1, and N9 strains, and 80% of 22 avian influenza samples. It had difficulty with avian N6 types and swine H3 and N2 influenza specimens. The FluChip-8G Insight assay performed well with most human, environmental, and animal samples, but had some difficulty with samples containing multiple viral strains and with specific animal influenza strains. As classical virology methods are often iterative and can take weeks, the FluChip-8G Insight Assay rapid results (time range 8 to 12 h) offers considerable time savings. As the FluChip-8G analysis algorithm is expected to improve over time with addition of new subtypes and sample matrices, the FluChip-8G Insight Assay has considerable promise for rapid characterization of novel influenza viruses affecting humans or animals.


Author(s):  
Thomas Sherman ◽  
Guillem Sole-Mari ◽  
Jeffrey Hyman ◽  
Matthew R. Sweeney ◽  
Daniel Vassallo ◽  
...  

2016 ◽  
Vol 55 (19) ◽  
pp. 5273 ◽  
Author(s):  
Guangyu Zhao ◽  
Zheng Duan ◽  
Lian Ming ◽  
Yiyun Li ◽  
Ruipeng Chen ◽  
...  

2018 ◽  
Vol 55 (1) ◽  
pp. 9-13 ◽  
Author(s):  
Zoran Popa ◽  
Laura Cristina Rusu ◽  
Razvan Susan ◽  
Iulia Pinzaru ◽  
Elena Ardelean ◽  
...  

The cloves are antiseptic, antiparasitic, antibacterial, antifungal, antiviral, anesthetic, analgesic, anti-inflammatory, tonic, carminative, anti-ulcer, antithrombotic, antioxidant and anti-cancerous. They contain eugenol, tannins and flavonoids that also help to strengthen the vein wall. This paper presents the obtaining and the characterization of a polyurethane drug delivery system which can be used for the transmembrane transport of eugenol in oral therapies. The products were analyzed by pH and solubility measurements, thermal decomposition and zetasizer tests and they were applied on mice skin to evaluate their harmfulness. The results suggest that were obtained neutral pH structures with low solubility and a good thermal stability, with sizes between 241 and 289 nm and no toxicity effect was found in the case of studied samples.


Sign in / Sign up

Export Citation Format

Share Document