scholarly journals Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players

Sports ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 121 ◽  
Author(s):  
Jean-François Fortin ◽  
François Billaut

Team-sport athletes and coaches use varied strategies to enhance repeated-sprint ability (RSA). Aside from physical training, a well-conducted warm-up enhances RSA via increased oxidative metabolism. Strategies that impede blood flow could potentiate the effects of a warm-up due to their effects on the endothelial and metabolic functions. This study investigated whether performing a warm-up combined with blood-flow restriction (WFR) induces ergogenic changes in blood volume, muscle oxygenation, and RSA. In a pair-matched, single-blind, pre-post parallel group design, 15 American football players completed an RSA test (12 × 20 m, 20 s rest), preceded by WFR or a regular warm-up (SHAM). Pressure was applied on the athletes’ upper thighs for ≈15 min using elastic bands. Both legs were wrapped at a perceived pressure of 7 and 3 out of 10 in WFR and SHAM, respectively. Changes in gastrocnemius muscle oxygen saturation (SmO2) and total hemoglobin concentration ([THb]) were monitored with near-infrared spectroscopy. Cohen’s effect sizes (ES) were used to estimate the impact of WFR. WFR did not clearly alter best sprint time (ES −0.25), average speed (ES 0.25), total time (ES −0.12), and percent decrement score (ES 0.39). While WFR did not meaningfully alter average SmO2 and [THb], the intervention clearly increased the maximum [THb] and the minimum and maximum SmO2 during some of the 12 sprint/recovery periods (ES 0.34–1.43). Results indicate that WFR positively alters skeletal muscle hemodynamics during an RSA test. These physiological changes did not improve short-term RSA, but could be beneficial to players during longer activities such as games.

2006 ◽  
Vol 100 (3) ◽  
pp. 850-857 ◽  
Author(s):  
Kenneth M. Tichauer ◽  
Derek W. Brown ◽  
Jennifer Hadway ◽  
Ting-Yim Lee ◽  
Keith St. Lawrence

Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.


2016 ◽  
Vol 18 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Doug A. King ◽  
Patria A. Hume ◽  
Conor Gissane ◽  
Trevor N. Clark

OBJECTIVE Direct impact with the head and the inertial loading of the head have been postulated as major mechanisms of head-related injuries, such as concussion. METHODS This descriptive observational study was conducted to quantify the head impact acceleration characteristics in under-9-year-old junior rugby union players in New Zealand. The impact magnitude, frequency, and location were collected with a wireless head impact sensor that was worn by 14 junior rugby players who participated in 4 matches. RESULTS A total of 721 impacts > 10g were recorded. The median (interquartile range [IQR]) number of impacts per player was 46 (IQR 37–58), resulting in 10 (IQR 4–18) impacts to the head per player per match. The median impact magnitudes recorded were 15g (IQR 12g–21g) for linear acceleration and 2296 rad/sec2 (IQR 1352–4152 rad/sec2) for rotational acceleration. CONCLUSIONS There were 121 impacts (16.8%) above the rotational injury risk limit and 1 (0.1%) impact above the linear injury risk limit. The acceleration magnitude and number of head impacts in junior rugby union players were higher than those previously reported in similar age-group sports participants. The median linear acceleration for the under-9-year-old rugby players were similar to 7- to 8-year-old American football players, but lower than 9- to 12-year-old youth American football players. The median rotational accelerations measured were higher than the median and 95th percentiles in youth, high school, and collegiate American football players.


2014 ◽  
Vol 39 (5) ◽  
pp. 521-529 ◽  
Author(s):  
William M. Southern ◽  
Terence E. Ryan ◽  
Mary A. Reynolds ◽  
Kevin McCully

The purpose of this study was to assess the reproducibility of resting blood flow, resting oxygen consumption, and mitochondrial capacity in skeletal muscle using near-infrared spectroscopy (NIRS). We also determined the influence of 2 exercise modalities (ergometer and rubber exercise bands) on the NIRS measurements. Fifteen young, healthy participants (5 female, 10 male) were tested on 2 nonconsecutive occasions within an 8-day period. The NIRS device was placed on the medial gastrocnemius. Venous and arterial occlusions were performed to obtain blood flow and oxygen consumption. A series of repeated arterial occlusions was used to measure the recovery kinetics of muscle oxygen consumption after ∼7–10 s of voluntary plantar flexion exercise. Resting blood flow had mean coefficients of variation (CV) of 42% and 38% for bands and ergometer, respectively, and resting metabolism had mean CVs of 17% and 12% for bands and ergometer, respectively. The recovery time constant of oxygen consumption (day 1 bands and ergometer: 23.2 ± 3.7 s, 27.6 ± 6.5 s, respectively; day 2 bands and ergometer: 25.5 ± 5.4 s, 25.0 ± 4.9 s, respectively) had mean CVs of 10% and 11% for bands and ergometer, respectively. We conclude that measurements of oxygen consumption and mitochondrial capacity using NIRS can be obtained with good reproducibility.


2021 ◽  
pp. 626-634
Author(s):  
Jan Schroeder ◽  
Jan Wilke ◽  
Karsten Hollander

Despite its beneficial effects on flexibility and muscle soreness, there is still conflicting evidence regarding dose-response relationships and underlying mechanisms of foam rolling (FR). This study aimed to investigate the impact of different FR protocols on tissue perfusion and tissue stiffness. In a randomized crossover trial, two FR protocols (2x1 min, 2x3 min) were applied to the right anterior thigh of twenty healthy volunteers (11 females, 25 ± 4 years). Tissue perfusion (near infrared spectroscopy, NIRS) and stiffness (Tensiomyography, TMG and Myotonometry, MMT) were assessed before and after FR application. Variance analyses revealed a significant interaction of FR duration and tissue perfusion (F[1,19] = 7.098, p = 0.015). Local blood flow increased significantly from pre to post test (F[1,19] = 7.589, p = 0.013), being higher (Δ +9.7%) in the long-FR condition than in the short-FR condition (Δ +2.8%). Tissue stiffness (MMT) showed significant main effects for time (F[1,19] = 12.074, p = 0.003) and condition (F[1,19] = 7.165, p = 0.015) with decreases after short-FR (Δ -1.6%) and long-FR condition (Δ -1.9%). However, there was no time*dose-interaction (F[1,19] = 0.018, p = 0.895). No differences were found for TMG (p > 0.05). FR-induced changes failed to exceed the minimal detectable change threshold (MDC). Our data suggest that increased blood flow and altered tissue stiffness may mediate the effects of FR although statistical MDC thresholds were not achieved. Longer FR durations seem to be more beneficial for perfusion which is of interest for exercise professionals designing warm-up and cool-down regimes. Further research is needed to understand probable effects on parasympathetic outcomes representing systemic physiological responses to locally applied FR stimulations.


Author(s):  
Ryota Asahara ◽  
Kei Ishii ◽  
Nan Liang ◽  
Yukari Hatanaka ◽  
Kei Hihara ◽  
...  

Using wireless multi-channel near-infrared spectroscopy, regional difference in cortical activity over the prefrontal cortex (PFC) was examined prior to and during overground walking, and in response to changes in speed and cognitive demand. Oxygenated-hemoglobin concentration (Oxy-Hb) as index of cortical activity in ventrolateral PFC (VLPFC), dorsolateral PFC (DLPFC), and frontopolar cortex (FPC) was measured in 14 subjects, while heart rate was measured as estimation of exercise intensity in 6 subjects. The impact of mental imagery on prefrontal Oxy-Hb was also explored. On both sides, Oxy-Hb in VLPFC, DLPFC, and lateral FPC was increased prior to the onset of normal speed walking, whereas Oxy-Hb in medial FPC did not respond prior to walking onset. During the walking, Oxy-Hb further increased in bilateral VLPFC, whereas Oxy-Hb was decreased in DLPFC and lateral and medial FPC. Increasing walking speed did not alter the increase in Oxy-Hb in VLPFC but counteracted the decrease in Oxy-Hb in DLPFC (but not in lateral and medial FPC). Treadmill running evoked a greater Oxy-Hb increase in DLPFC (n = 5 subjects). Furthermore, increasing cognitive demand during walking, by deprivation of visual feedback, counteracted the decrease in Oxy-Hb in DLPFC and lateral and medial FPC, but it did not affect the increase in Oxy-Hb in VLPFC. Taken together, the profound and localized Oxy-Hb increase is a unique response for the VLPFC. The regional heterogeneity of the prefrontal Oxy-Hb responses to natural overground walking was accentuated by increasing walking speed or cognitive demand, suggesting functional distinction within the PFC.


2008 ◽  
Vol 33 (4) ◽  
pp. 743-752 ◽  
Author(s):  
Sirous Ahmadi ◽  
Peter J. Sinclair ◽  
Nasim Foroughi ◽  
Glen M. Davis

Eccentric exercise (EE), a common type of muscular activity whereby muscles lengthen and contract simultaneously, is associated with higher levels of force but may also evoke muscle damage. We investigated the hypothesis that unaccustomed EE might impair muscle oxygenation and muscle blood flow in healthy adults. Ten healthy males performed a bout of 70 maximal eccentric contractions of the elbow flexors. Before and after EE on day 1 and over the next 6 days, maximum voluntary isometric torque (MVT), serum creatine kinase (CK), and the changes in muscle oxygen saturation, blood flow, and oxygen uptake (using near-infrared spectroscopy) within the biceps brachii were assessed. MVT decreased, whereas muscle soreness and CK increased after EE (p < 0.05). Mean resting oxygen saturation increased by 22% after acute EE, and remained elevated by 5%–9% for the following 6 days. During isometric contractions, significant decreases were observed in oxygen desaturation and re-saturation kinetics after EE and these declines were also significantly prevalent over the following 6 days. Both muscle blood flow and oxygen uptake increased significantly after acute EE, but recovered on the next day. This study revealed some prolonged alterations in muscle oxygenation at rest and during exercise after EE, which might be due to a decrease in muscle oxygen consumption, an increase in oxygen delivery, and (or) a combination of both. However, both oxygen consumption and blood flow recovered within 24 h after the eccentric exercise session, and therefore, the reason(s) for the changes in tissue oxygen saturation remain unknown.


Author(s):  
Robert Bielitzki ◽  
Daniel Hamacher ◽  
Astrid Zech

Abstract Background American football players need the ability to provide maximal muscular power in a modicum of time. Postactivation performance enhancement (PAPE), which is characterized by an acute improvement of a performance measure following conditioning contractions, could be of value for American football players. The aim of the present study was to determine the effect of a heavy load back squat PAPE protocol on three-point explosion (TPE; an essential blocking technique and drill) and 40-yard dash (40YD) performance compared to a traditional warm-up in American football players. Methods In a crossover study design, eighteen male competitive regional league American football players (mean ± SD: body mass 93.9 ± 15.5 kg, height 181.4 ± 6.8 cm, age 24.8 ± 3.9 years) performed a TPE on a double blocking sled (weight: 150 kg) and a 40YD (36.6 m with a 5 and 10 m split) 8 min after two different warm-up conditions. One condition was a traditional, football specific warm-up (TWU) consisting of game related movements (e.g. backward lunges, lateral power steps), whereas the other condition (PAPE) consisted of three explosive back squats with a load of 91 % one-repetition maximum. Results There was no significant difference in TPE between TWU and PAPE. For the 40YD, we found significantly shorter sprint times in the PAPE condition with medium effect sizes for the 5 m (p = 0.007; r = 0.45) and 10 m (p = 0.020; r = 0.39) but not for the whole 36.6 m distance (p = 0.084; r = 0.29) compared to the TWU condition. Conclusions The used heavy load back squat PAPE protocol improved sprint performance over short distances (≤ 10 m) but not complex movements like the three-point explosion.


Sign in / Sign up

Export Citation Format

Share Document