scholarly journals Identifying Core Parts in Complex Mechanical Product for Change Management and Sustainable Design

2018 ◽  
Vol 10 (12) ◽  
pp. 4480 ◽  
Author(s):  
Na Zhang ◽  
Yu Yang ◽  
Jianxin Wang ◽  
Baodong Li ◽  
Jiafu Su

Changes in customer needs are unavoidable during the design process of complex mechanical products, and may bring severely negative impacts on product design, such as extra costs and delays. One of the effective ways to prevent and reduce these negative impacts is to evaluate and manage the core parts of the product. Therefore, in this paper, a modified Dempster-Shafer (D-S) evidential approach is proposed for identifying the core parts. Firstly, an undirected weighted network model is constructed to systematically describe the product structure. Secondly, a modified D-S evidential approach is proposed to systematically and scientifically evaluate the core parts, which takes into account the degree of the nodes, the weights of the nodes, the positions of the nodes, and the global information of the network. Finally, the evaluation of the core parts of a wind turbine is carried out to illustrate the effectiveness of the proposed method in the paper. The results show that the modified D-S evidential approach achieves better performance regarding the evaluation of core parts than the node degree centrality measure, node betweenness centrality measure, and node closeness centrality measure.

Author(s):  
Natarajan Meghanathan

The authors present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. They consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC), and betweenness centrality (BWC). They define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. The authors observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. They observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


Author(s):  
Natarajan Meghanathan

We present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. We consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC) and betweenness centrality (BWC). We define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. We observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. We observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


2017 ◽  
Vol 10 (2) ◽  
pp. 52
Author(s):  
Natarajan Meghanathan

Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ. We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ-search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ-spacer) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r. We show the use of the binary search algorithm to find the maximum Threshold PCC value rmax (such that δ-spacermax is positive) for a real-world network. We observe a very strong correlation between rmax and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower rmax value and vice-versa.


Author(s):  
Natarajan Meghanathan

The author proposes the use of centrality-metrics to determine connected dominating sets (CDS) for complex network graphs. The author hypothesizes that nodes that are highly ranked by any of these four well-known centrality metrics (such as the degree centrality, eigenvector centrality, betweeness centrality and closeness centrality) are likely to be located in the core of the network and could be good candidates to be part of the CDS of the network. Moreover, the author aims for a minimum-sized CDS (fewer number of nodes forming the CDS and the core edges connecting the CDS nodes) while using these centrality metrics. The author discusses our approach/algorithm to determine each of these four centrality metrics and run them on six real-world network graphs (ranging from 34 to 332 nodes) representing various domains. The author observes the betweeness centrality-based CDS to be of the smallest size in five of the six networks and the closeness centrality-based CDS to be of the smallest size in the smallest of the six networks and incur the largest size for the remaining networks.


CounterText ◽  
2016 ◽  
Vol 2 (2) ◽  
pp. 217-235
Author(s):  
Gordon Calleja

This paper gives an insight into the design process of a game adaptation of Joy Division's Love Will Tear Us Apart (1980). It outlines the challenges faced in attempting to reconcile the diverging qualities of lyrical poetry and digital games. In so doing, the paper examines the design decisions made in every segment of the game with a particular focus on the tension between the core concerns of the lyrical work being adapted and established tenets of game design.


2021 ◽  
Vol 13 (15) ◽  
pp. 8503
Author(s):  
Henrik Skaug Sætra

Artificial intelligence (AI) now permeates all aspects of modern society, and we are simultaneously seeing an increased focus on issues of sustainability in all human activities. All major corporations are now expected to account for their environmental and social footprint and to disclose and report on their activities. This is carried out through a diverse set of standards, frameworks, and metrics related to what is referred to as ESG (environment, social, governance), which is now, increasingly often, replacing the older term CSR (corporate social responsibility). The challenge addressed in this article is that none of these frameworks sufficiently capture the nature of the sustainability related impacts of AI. This creates a situation in which companies are not incentivised to properly analyse such impacts. Simultaneously, it allows the companies that are aware of negative impacts to not disclose them. This article proposes a framework for evaluating and disclosing ESG related AI impacts based on the United Nation’s Sustainable Development Goals (SDG). The core of the framework is here presented, with examples of how it forces an examination of micro, meso, and macro level impacts, a consideration of both negative and positive impacts, and accounting for ripple effects and interlinkages between the different impacts. Such a framework helps make analyses of AI related ESG impacts more structured and systematic, more transparent, and it allows companies to draw on research in AI ethics in such evaluations. In the closing section, Microsoft’s sustainability reporting from 2018 and 2019 is used as an example of how sustainability reporting is currently carried out, and how it might be improved by using the approach here advocated.


Author(s):  
LeRoy E. Taylor ◽  
Mark R. Henderson

Abstract This paper describes the roles of features and abstraction mechanisms in the mechanical design process, mechanical designs, and product models of mechanical designs. It also describes the relationship between functions and features in mechanical design. It is our experience that many research efforts exist in the areas of design and product modeling and, further, that these efforts must be cataloged and compared. To this end, this paper culminates with the presentation of a multi-dimensional abstraction space which provides a unique framework for (a) comparing mechanical engineering design research efforts, (b) relating conceptual objects used in the life cycle of mechanical products, and (c) defining a product modeling space.


2018 ◽  
Vol 8 (4) ◽  
pp. 291 ◽  
Author(s):  
Dongryeul Kim

  In order to find out the influence of Korean Middle School Students' relationship by science class applying STAD collaborative learning, this study conducted a social network analysis and sought to analyze the communication networks within the group and identified the change process of the type. The subject of this study was 30 students of the second grade at the girls' middle school located in Korea's Metropolitan City. For five weeks, science class applying STAD Collaborative Learning was implemented in the ‘reproduction and generation’ chapter. First, the class social network analysis showed that all the prices of density, degree centrality, closeness centrality, and betweenness centrality have risen after science class applying STAD Collaborative Learning. Also, the classroom's relationship index has improved. In other words, STAD Collaborative Learning encouraged interaction among students. Second, in order to research popularity, students' centrality analysis through the class social network analysis showed that top-ranked students' values of density, degree centrality, closeness centrality, and betweenness centrality appeared commonly high after science class applying STAD Collaborative Learning. Third, the analysis of the communication network change within six groups showed that all channel type appeared most often and circle type also appeared anew after science class applying STAD Collaborative Learning. In other words, it was possible to exchange information freely and communicate with all members of the group through STAD Collaborative Learning.


2021 ◽  
Vol 905 (1) ◽  
pp. 012015
Author(s):  
A Setiawan

Abstract One strategy of communities to easily embrace ecological awareness is by involving directly in the improvement of their environmental quality. This paper discusses the case study research of the co-design process of the neighborhood regeneration project in Kampung Tongkol at the Ciliwung riverbank, Jakarta. This project is carried out collaboratively involving residents of the area and facilitated by ASF (Architecture Sans Frontières) Indonesia. The main important object of this regeneration project is the construction of a self-supporting sample house. This house aims as an ideal model which another neighborhood can replicate. Residents are directly involved in the organizing, the design process, to the construction stage. The primary purpose of regeneration is to improve the quality of the residential environment. The principles of sustainable design are employed as the main guidance from the beginning of the process. This study concludes that the final achievement of this project not only results in a higher quality environment but also raises the ecological awareness of the residents of the neighborhood.


Sign in / Sign up

Export Citation Format

Share Document