scholarly journals Semi-Continuous Anaerobic Digestion of Orange Peel Waste: Effect of Activated Carbon Addition and Alkaline Pretreatment on the Process

2019 ◽  
Vol 11 (12) ◽  
pp. 3386 ◽  
Author(s):  
Paolo Calabrò ◽  
Filippo Fazzino ◽  
Adele Folino ◽  
Emilia Paone ◽  
Dimitrios Komilis

The valorization of orange peel waste (OPW) is sought worldwide mainly via anaerobic digestion. A common problem encountered during the biological treatment is the seasonality of its production and the presence of d-Limonene. The latter is a typical anti-microbial compound. This work aims to evaluate the effect of the use of granular activated carbon (GAC) combined with alkaline pretreatment to enhance methane generation during semi-continuous anaerobic digestion of OPW. The experimental design consisted of two groups of experiments, A and B. Experiment A was designed to verify the maximum OPW loading and to assess the effect of pH and nutrients on the process. Experiment B was designed to study the effect of alkaline pretreatment alone and of alkaline pretreatment aided by biochar addition to the process. Apart from the methane yields, the d-Limonene contents were measured in all experiments. The preliminary results showed that OPW alkaline pretreatment after the addition of a moderate amount of GAC can render anaerobic digestion of OPW sustainable as long as the organic loading does not exceed 2 gVS·L−1·day−1 and nutrients are supplemented. The experiment in which GAC was added after alkaline pretreatment resulted in the highest methane yield and reactor stability.

2017 ◽  
Vol 35 (9) ◽  
pp. 967-977 ◽  
Author(s):  
Muzammil Anjum ◽  
Azeem Khalid ◽  
Samia Qadeer ◽  
Rashid Miandad

Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20–50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l-1) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m3 t-1substrate compared with 57.35 m3 t-1substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.


2021 ◽  
Vol 2049 (1) ◽  
pp. 012025
Author(s):  
Awitdrus ◽  
Gladys May Grace Siregar ◽  
Agustino ◽  
Saktioto ◽  
Iwantono ◽  
...  

Abstract Chemical activation with assisted microwave irradiation was used to produced activated carbon from orange peel waste. The activating agent was potassium hydroxide (KOH) with concentrations of 2 M, 3 M, and 4 M. The microwave irradiation was done for 15 minutes with a 630 Watt output power. KOH concentration affected the physical properties of OP-ACxM. With increasing KOH concentration, the interlayer spacing (d002 and d100 ) grew, stack height (Lc ) increased, and stack width (La) dropped. The number of pores on the surface of OP-ACxM increased after the chemical activation process. In OP-ACxM, FTIR analysis reveals the presence of O-H, C-H, C-C, C=O, C=C, and C-O.


2019 ◽  
Vol 85 ◽  
pp. 202-213 ◽  
Author(s):  
Ana Karen Tovar ◽  
Luis A. Godínez ◽  
Fabricio Espejel ◽  
Rosa-María Ramírez-Zamora ◽  
Irma Robles

2020 ◽  
Vol 154 ◽  
pp. 849-862 ◽  
Author(s):  
Paolo S. Calabrò ◽  
Filippo Fazzino ◽  
Rossana Sidari ◽  
Demetrio Antonio Zema

2015 ◽  
Author(s):  
Pratap Pullammanappallil ◽  
Haim Kalman ◽  
Jennifer Curtis

Recent concerns regarding global warming and energy security have accelerated research and developmental efforts to produce biofuels from agricultural and forestry residues, and energy crops. Anaerobic digestion is a promising process for producing biogas-biofuel from biomass feedstocks. However, there is a need for new reactor designs and operating considerations to process fibrous biomass feedstocks. In this research project, the multiphase flow behavior of biomass particles was investigated. The objective was accomplished through both simulation and experimentation. The simulations included both particle-level and bulk flow simulations. Successful computational fluid dynamics (CFD) simulation of multiphase flow in the digester is dependent on the accuracy of constitutive models which describe (1) the particle phase stress due to particle interactions, (2) the particle phase dissipation due to inelastic interactions between particles and (3) the drag force between the fibres and the digester fluid. Discrete Element Method (DEM) simulations of Homogeneous Cooling Systems (HCS) were used to develop a particle phase dissipation rate model for non-spherical particle systems that was incorporated in a two-fluid CFDmultiphase flow model framework. Two types of frictionless, elongated particle models were compared in the HCS simulations: glued-sphere and true cylinder. A new model for drag for elongated fibres was developed which depends on Reynolds number, solids fraction, and fibre aspect ratio. Schulze shear test results could be used to calibrate particle-particle friction for DEM simulations. Several experimental measurements were taken for biomass particles like olive pulp, orange peels, wheat straw, semolina, and wheat grains. Using a compression tester, the breakage force, breakage energy, yield force, elastic stiffness and Young’s modulus were measured. Measurements were made in a shear tester to determine unconfined yield stress, major principal stress, effective angle of internal friction and internal friction angle. A liquid fludized bed system was used to determine critical velocity of fluidization for these materials. Transport measurements for pneumatic conveying were also assessed. Anaerobic digestion experiments were conducted using orange peel waste, olive pulp and wheat straw. Orange peel waste and olive pulp could be anaerobically digested to produce high methane yields. Wheat straw was not digestible. In a packed bed reactor, anaerobic digestion was not initiated above bulk densities of 100 kg/m³ for peel waste and 75 kg/m³ for olive pulp. Interestingly, after the digestion has been initiated and balanced methanogenesis established, the decomposing biomass could be packed to higher densities and successfully digested. These observations provided useful insights for high throughput reactor designs. Another outcome from this project was the development of low cost devices to measure methane content of biogas for off-line (US$37), field (US$50), and online (US$107) applications. 


Sign in / Sign up

Export Citation Format

Share Document