scholarly journals Passive Design Strategies for Residential Buildings in Different Spanish Climate Zones

2019 ◽  
Vol 11 (18) ◽  
pp. 4816 ◽  
Author(s):  
Maria-Mar Fernandez-Antolin ◽  
José del Río ◽  
Vincenzo Costanzo ◽  
Francesco Nocera ◽  
Roberto-Alonso Gonzalez-Lezcano

The Passive House (PH) concept is considered an efficient strategy to reduce energy consumption in the building sector, where most of the energy is used for heating and cooling applications. For this reason, energy efficiency measures are increasingly implemented in the residential sector, which is the main responsible for such a consumption. The need for professionals dealing with energy issues, and particularly for architects during the early stages of their architectural design, is crucial when considering energy efficient buildings. Therefore, architects involved in the design and construction stages have key roles in the process of enhancing energy efficiency in buildings. This research work explores the energy efficiency and optimized architectural design for residential buildings located in different climate zones in Spain, with an emphasis on Building Performance Simulation (BPS) as the key tool for architects and other professionals. According to a parametric analysis performed using Design Builder, the following optimal configurations are found for typical residential building projects: North-to-South orientation in all the five climate zones, a maximum shape factor of 0.48, external walls complying with the maximum U-value prescribed by Spanish Building Technical Code (0.35 Wm−2K−1) and a Window-to-Wall Ratio of no more than 20%. In terms of solar reflectance, it is found that the use of light colors is better in hotter climate zones A4, B4, and C4, whereas the best option is using darker colors in the colder climate zones D3 and E1. These measures help reaching the energy demand thresholds set by the Passivhaus Standard in all climate zones except for those located in climates C4, D3 and E1, for which further passive design measures are needed.

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 2071-2084 ◽  
Author(s):  
Norbert Harmathy ◽  
Danijela Urbancl ◽  
Darko Goricanec ◽  
Zoltán Magyar

The research elaborates various solutions using detailed economic evaluation and energy efficiency calculation and simulation technology for formulating applicable, energy and cost-efficient retrofit solutions of single-family residential buildings located in temperate climate areas. Primarily the annual energy demand for a reference existing single-family residential building was determined. The economic analysis was performed for six formulated refurbishment scenarios in order to determine which of the scenarios will demonstrate optimal performance both in energy and cost efficiency. A feasibility study was performed for the most efficient scenario, which included an economic evaluation of low temperature radiant heating systems were three energy suppliers (oil, natural gas and electricity for air to water heat pump) were compared. According to financial analyses the optimal scenario includes the replacement of windows, installation of 15 cm expanded polystyrene thermal insulation, low temperature radiant floor heating, with a payback period of ten years.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


2021 ◽  
Vol 237 ◽  
pp. 03006
Author(s):  
Pengfei Zhou ◽  
Chi Zhang ◽  
Jiang Wang

Building facades have evident effects on indoor thermal comfort. Hence, on the basis of a multifunctional residential building in Sydney, Australia, this research uses DesignBuilder software to optimize passive system design on building facades. This research also analyses the influences of changing window glazing type, adding additional shading devices and changing the material of the exterior wall on indoor thermal comfort. Results show that the number of uncomfortable hours can be reduced by 446, 186 and 874 hours by using a double-layer Low-E glass, adding extra shading device and adopting an external wall material with low thermal conductivity, respectively. When the three aforementioned passive design strategies are combined, indoor thermal environment discomfort time can be reduced by 24%. Therefore, the indoor thermal comfort of a building can be considerably improved through effective passive designs of the building facade.


2019 ◽  
Vol 11 (19) ◽  
pp. 5203 ◽  
Author(s):  
Waqas Ahmed Mahar ◽  
Griet Verbeeck ◽  
Manoj Kumar Singh ◽  
Shady Attia

In Pakistan, reinforced concrete frame houses are the most widely used and common construction technology. In a country that experiences extreme hot and cold seasons throughout the year, buildings need to be adaptable to the climate to improve the thermal comfort of the inhabitants. Therefore, the aim of this study was to improve thermal comfort in reinforced concrete frame houses using passive design and energy efficiency measures in Quetta, Pakistan. Thermal comfort of a representative house was investigated using a building performance simulation. The building model created in EnergyPlus was validated by comparing it with on-site monitored data in both summer and winter seasons. The model was calibrated using statistical methods. Then, the calibrated model was used to perform a whole year simulation in which various orientations, ventilation, passive design, and energy efficiency strategies were applied to perform parametric analysis for the improvement of thermal comfort. The best fit-to-context thermal comfort model was selected, and the potential of bioclimatic design strategies was quantified. The results indicate that by adopting passive design strategies comfort hours can be increased from 43% to 59%. The results of the study revealed many findings which could be useful for architects and building engineers to set a future direction for improvement of indoor comfort in Quetta as well as in many other areas of Balochistan Province in Pakistan.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


Author(s):  
Robert Staiger

The chapter deals with the green energetic consideration of today's building envelopes for residential and non-residential buildings. It investigates the energetic effects the envelopes have on energy efficiency, energy consumption, material use, sustainable use of resources, lifetime considerations, economic and ecological impact. Today's it is estimated that approximately 30% of the annual primary energy demand for residential and non-residential buildings is needed. Energy resources for heat, electricity, air conditioning and cooling purposes, fossil fuels in form of gas and liquid are predominantly used.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012146
Author(s):  
D Mohaibesh ◽  
S Monna ◽  
H Qadi ◽  
R Sokkar

Abstract Climate-resilient buildings in Palestine can play an important role in a more sustainable residential building sector. This paper aims at evaluating the effects of adopting architectural design strategies and material technologies from vernacular architecture to create a new climate-resilient building. The paper targets single houses as these represent the majority of residential buildings in suburban and rural areas, and are similar to the vernacular architecture in size and functionality. The EDSL Tas simulation tool was used to assess the thermal performance and energy savings in the proposed model compared with traditional houses and modern typical houses, in two different climatic zones. The proposed climate-resilient house has materials and design strategies derived from vernacular architecture, in addition to the use of thermal insulation. The results show that the proposed house is more climate-resilient compared to modern houses. In cold winter and hot summer climates, the proposed model presents a total annual heating and cooling energy consumption of 59% less than typical modern houses, and 5% more than old buildings. In hot arid summer and warm winter climates, the proposed house presents a total annual heating and cooling energy consumption of 58% less than a modern typical house and 8% more than the traditional house.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5979
Author(s):  
Ikram Merini ◽  
Angel Molina-García ◽  
M. Socorro García-Cascales ◽  
Mustapha Mahdaoui ◽  
Mohamed Ahachad

The trend in energy consumption, with a particular focus on heating and cooling demand, is an issue that is relevant to the promotion of new energy policies and more efficient energy systems. Moreover, heating and cooling energy demand is expected to rise in the next several decades, mainly due to climate change as well as increasing incomes in developing countries. In this context, the building sector is currently a relevant energy-intensive economic sector in Morocco; it accounts for 33% of the country’s total energy demand (as the sector with the second highest energy demand, after the transport sector), with the residential sector accounting for 25% and the tertiary sector accounting for 8%. Aiming to reduce energy dependence and promote sustainable development, the Moroccan government recently issued a comprehensive plan to increase the share of renewables and improve energy efficiency. This strategy includes novel thermal building regulations promoted by the Moroccan Agency for Energy Efficiency. This paper analyzes the thermal behavior and heating-cooling energy demand of a residential building located in Tangier (Morocco) as a case example, based on the country’s new thermal regulations and considering specific climatological conditions. A comparison with common Moroccan residential buildings as well as with those in nearby countries with similar meteorological conditions but significant differences in terms of energy demand regulation and requirements, such as Spain, is also included. Simulations were carried out using the DesingBuilder and EnergyPlus Software packages. According to the results, the last building thermal regulation requirements in Morocco need to be revised and extended in order to achieve the energy efficiency objectives established by the Moroccan government for 2030.


2019 ◽  
Vol 11 (22) ◽  
pp. 6473 ◽  
Author(s):  
He ◽  
Ng ◽  
Hossain ◽  
Skitmore

The building envelope plays a significant role in the energy performance of buildings and windows are a key element in transmitting heating and cooling between the indoor and outdoor environment, and hence an adequate window system is one of the most important retrofit strategies of existing buildings for energy conservation. Therefore, this study presents a method with a theoretical case study to examine the improvement of energy efficiency in a typical high-rise residential building through window retrofitting. A building energy design model in Designbuilder along with a building information modeling (BIM) model in Revit are developed, with 20 common potential glazing alternatives being analyzed to predict the potential energy savings in the same case building with identical orientation located in a variety of climate zones in China. Based on different parameters and considerations, the results demonstrated that the currently relatively expensive low-e window glazing has the best energy performance in all climate zones, but is sufficiently close to conventionally glazed windows in its energy efficiency to discourage its adoption at present, and that, instead, a single dark conventional glazed window is preferred in a hot summer/warm winter climate, double dark traditional glazing in a hot summer/cold winter climate, and a double clear conventional window in a cold climate. Based on the simulated results, an indicative suggestion was provided to select an adequate window system for residential building retrofitting in the studied climates or similar climatic regions.


2021 ◽  
Author(s):  
Mohammad Aldubyan ◽  
Moncef Krarti ◽  
Eric Williams

This paper describes the development of the Residential Energy Model (REEM) for Saudi Arabia using an engineering bottom-up approach. The model can assess energy demand for the current residential building stock and the impact of energy efficiency and demand-side management programs. It accounts for the makeup and features of the Kingdom’s existing housing stock using 54 prototypes of residential buildings defined by three building types, three vintages, and six locations representing different climatic zones.


Sign in / Sign up

Export Citation Format

Share Document