scholarly journals Consequences of Climate Change Impacts and Incidences of Extreme Weather Events in Relation to Crop Production in Bhutan

2020 ◽  
Vol 12 (10) ◽  
pp. 4319 ◽  
Author(s):  
Ngawang Chhogyel ◽  
Lalit Kumar ◽  
Yadunath Bajgai

Being a country in the Himalayas, Bhutan is highly prone to the vagaries of weather events that affect agricultural production and the subsequent livelihood of the people. To identify the main issues that affect crop production and the decisions of farmers, a survey was conducted in three different agro-ecosystems in Bhutan. Our key findings indicate that farming and the decisions of farmers were largely affected by different climatic and non-climatic factors. These were in descending order of importance: irrigation availability > farm labour > crop seasonality > crop damage (climatic) > land holding > crop damage (wildlife) > crop damage (diseases and pests). The most important consequences of climate change impacts were the drying of irrigation sources (4.35) and crop losses due to weather events (4.10), whereas land fallowing, the occurrence of flood and soil erosion, weed pressure and changes in cropping pattern (with mean ratings of 2.53–3.03) experienced lesser consequences. The extreme weather events, such as untimely rains, drought and windstorms, were rated as the ‘most common’ to ‘common’ occurrences, thus inflicting a crop loss of 1–19%. These confirm our hearsay knowledge that extreme weather events have major consequences on irrigation water, which is said to be either drying or getting smaller in comparison to the past. Therefore, Bhutan must step up its on-ground farmer-support system towards improving the country’s food production, whilst embracing climate smart farm technologies for adapting to the impacts of change.

2021 ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

Abstract Finfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, Dynamic Energy Budget models for European seabass and meagre were developed and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm level were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


2021 ◽  
Vol 165 (3-4) ◽  
Author(s):  
Orestis Stavrakidis-Zachou ◽  
Konstadia Lika ◽  
Panagiotis Anastasiadis ◽  
Nikos Papandroulakis

AbstractFinfish aquaculture in the Mediterranean Sea faces increasing challenges due to climate change, while potential adaptation requires a robust assessment of the arising threats and opportunities. This paper presents an approach developed to investigate effects of climate drivers on Greek aquaculture, a representative Mediterranean country with a leading role in the sector. Using a farm level approach, dynamic energy budget models for European seabass and meagre were developed, and environmental forcing was used to simulate changes in production and farm profitability under IPCC scenarios RCP45 and RCP85. The effects of temperature and extreme weather events at the individual and farm levels were considered along with that of husbandry parameters such as stocking timing, market size, and farm location (inshore, offshore) for nine regions. The simulations suggest that at the individual level, fish may benefit from warmer temperatures in the future in terms of growth, thus reaching commercial sizes faster, while the husbandry parameters may have as large an effect on growth as the projected shifts in climatic cues. However, this benefit will be largely offset by the adverse effects of extreme weather events at the population level. Such events will be more frequent in the future and, depending on the intensity one assigns to them, they could cause losses in biomass and farm profits that range from mild to detrimental for the industry. Overall, these results provide quantification of some of the potential threats for an important aquaculture sector while suggesting possibilities to benefit from emerging opportunities. Therefore, they could contribute to improving the sector’s readiness for tackling important challenges in the future.


MAUSAM ◽  
2021 ◽  
Vol 67 (1) ◽  
pp. 93-104
Author(s):  
JAI SINGH PARIHAR

The research in remote sensing application in India started first in agriculture way back in 1969. With the improvement in satellite sensors, data processing algorithms, models and computational power over time, this research culminated into development of operational projects of CAPE and FASAL, tackling an important issue of operationally providing pre-harvest crop production forecast to stakeholders. This review paper details the sequential developments in the use of remote sensing data for crop production forecasting. The scientific developments in the use of single and multi-temporal optical and microwave satellite images for crop identification and yield estimation in India have been reviewed.  The case studies on use of remote sensing data for crop assessment under extreme weather events are also presented. These include the assessment of crop damage due to extreme weather events of floods, drought, and hailstorm. Examples on use of remote sensing for crop damage assessment due to pest and diseases and forecasting their incidence using satellite derived weather parameters are reviewed.


2021 ◽  
Vol 8 (9) ◽  
pp. 384-395
Author(s):  
Udit Debangshi

Climate-related agricultural vulnerabilities, as well as their implications for food security and farm livelihoods, have been extensively documented. Extreme weather events such as floods, droughts, heat and cold waves, hailstorms, strong winds, cyclones, and other weather events have increased the exposures of agriculture to climate risk. These processes are hampered by a lack of appropriate climatic elements, resulting in an unfavourable drop in crop productivity. Increased frequency and intensity of droughts and floods, as well as erratic precipitation patterns are predicted to increase year-to-year yield variability in crop production. Microclimate, which refers to the climatic elements in the immediate vicinity of the plants, is critical because it regulates and affects the physiological reactions of the plants as well as the energy exchange activities between the plant and its surroundings. Implementation of such microclimatic modifications in crop production are required to manage extreme weather risks and boost crop output in order to increase food security and agricultural sustainability in this changing climate. The goal of this paper is to improve crop production and land productivity by modifying microclimate as a manifestation of the efficiency and effectiveness of growth factor utilisation. Keywords: Agriculture's vulnerability, Crop productivity, Climate change, Microclimatic modifications.


2020 ◽  
Vol 12 (3) ◽  
pp. 435-452 ◽  
Author(s):  
Nadine Fleischhut ◽  
Stefan M. Herzog ◽  
Ralph Hertwig

AbstractAs climate change unfolds, extreme weather events are on the rise worldwide. According to experts, extreme weather risks already outrank those of terrorism and migration in likelihood and impact. But how well does the public understand weather risks and forecast uncertainty and thus grasp the amplified weather risks that climate change poses for the future? In a nationally representative survey (N = 1004; Germany), we tested the public’s weather literacy and awareness of climate change using 62 factual questions. Many respondents misjudged important weather risks (e.g., they were unaware that UV radiation can be higher under patchy cloud cover than on a cloudless day) and struggled to connect weather conditions to their impacts (e.g., they overestimated the distance to a thunderstorm). Most misinterpreted a probabilistic forecast deterministically, yet they strongly underestimated the uncertainty of deterministic forecasts. Respondents with higher weather literacy obtained weather information more often and spent more time outside but were not more educated. Those better informed about climate change were only slightly more weather literate. Overall, the public does not seem well equipped to anticipate weather risks in the here and now and may thus also fail to fully grasp what climate change implies for the future. These deficits in weather literacy highlight the need for impact forecasts that translate what the weather may be into what the weather may do and for transparent communication of uncertainty to the public. Boosting weather literacy may help to improve the public’s understanding of weather and climate change risks, thereby fostering informed decisions and mitigation support.


Sign in / Sign up

Export Citation Format

Share Document