scholarly journals Seismic Fragility Assessment of Columns in a Piloti-Type Building Retrofitted with Additional Shear Walls

2020 ◽  
Vol 12 (16) ◽  
pp. 6530
Author(s):  
Hoang Dang-Vu ◽  
Jiuk Shin ◽  
Kihak Lee

This study evaluated the influence of additional shear walls, constructed on the first floor, as strengthening methods for a piloti-type building subjected to earthquake loadings. Piloti-type buildings are commonly designed as urban structures in many cities of South Korea. The existence of just columns on the first floor of the building is a feature that is advantageous from an architectural viewpoint, and yet has potential structural disadvantages. Such columns usually exhibit shear–axial failure, due to inherent vertical and horizontal irregularities and insufficient seismic reinforcements. Among several retrofitting methods, including additional braces, carbon fiber reinforced polymers, dampers, and so forth, this research considered reinforced concrete shear walls to improve the seismic responses of piloti buildings. A parametric analysis of the location of the retrofitted shear walls in a typical piloti building was implemented using the Zeus-NL program. Nonlinear time history analysis and incremental dynamic analysis were performed to comparatively evaluate the structure’s seismic responses and fragility curves before and after retrofit.

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Swagata Banerjee Basu ◽  
Masanobu Shinozuka

It is difficult to incorporate multidimensional effect of the ground motion in the design and response analysis of structures. The motion trajectory in the corresponding multi-dimensional space results in time variant principal axes of the motion and defies any meaningful definition of directionality of the motion. However, it is desirable to consider the directionality of the ground motion in assessing the seismic damageability of bridges which are one of the most vulnerable components of highway transportation systems. This paper presents a practice-oriented procedure in which the structure can be designed to ensure the safety under single or a pair of independent orthogonal ground motions traveling horizontally with an arbitrary direction to structural axis. This procedure uses nonlinear time history analysis and accounts for the effect of directionality in the form of fragility curves. The word directionality used here is different from “directivity” used in seismology to mean a specific characteristic of seismic fault movement.


Author(s):  
Camilo Perdomo ◽  
Ricardo Monteiro ◽  
Halûk Sucuoğlu

<p>Over the past few decades, fragility curves became a powerful tool for the seismic vulnerability assessment of structures. There are several available analytical procedures for calculating fragility curves, using both static and dynamic nonlinear analyses. In this study, a nonlinear static method, based on Generalized Pushover Analysis (GPA), is implemented for the development of analytical fragility curves of reinforced concrete (RC) bridges. The relative accuracy of the GPA algorithm, when applied to a large number of existing bridges, is evaluated through the comparison with the results from Nonlinear Time History Analysis (NTHA). Results indicate that GPA provides a good estimation of the fragility curves with respect to NTHA. The added computational demand of the GPA algorithm in terms of the number of analyses pays off in terms of accuracy while keeping the simplicity of a non-adaptive conventional pushover algorithm, which is desirable in engineering practice.</p>


2018 ◽  
Vol 18 (02) ◽  
pp. 1871003 ◽  
Author(s):  
J. Prawin ◽  
A. Rama Mohan Rao

The majority of the existing damage diagnostic techniques are based on linear models. Changes in the state of the dynamics of these models, before and after damage in the structure based on the vibration measurements, are popularly used as damage indicators. However, the system may initially behave linearly and subsequently exhibit nonlinearity due to the incipience of damage. Breathing cracks that exhibit bilinear behavior are one such example of the damage induced due to nonlinearity. Further many real world structures even in their undamaged state are nonlinear. Hence, in this paper, we present a nonlinear damage detection technique based on the adaptive Volterra filter using the nonlinear time history response. Three damage indices based on the adaptive Volterra filter are proposed and their sensitiveness to damage and noise is assessed through two numerically simulated examples. Numerical investigations demonstrate the effectiveness of the adaptive Volterra filter model to detect damage in nonlinear structures even with measurement noise.


2013 ◽  
Vol 405-408 ◽  
pp. 1674-1677
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Peak displacement is one of the most important parameters for the performance based seismic design of bridge structure, while the peak displacement is often significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the statistics of peak displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single degree of freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the mean and dispersion of peak displacement of bridge structures, especially if the normalized yield strength and the natural vibration period are small.


2018 ◽  
Vol 20 (1) ◽  
pp. 35
Author(s):  
Pamuda Pudjisuryadi ◽  
Benjamin Lumantarna ◽  
Ryan Setiawan ◽  
Christian Handoko

The recent seismic code SNI 1726-2012 is significantly different compared to the older code SNI 1726-2002. The seismic hazard map was significantly changed and the level of maximum considered earthquake was significantly increased. Therefore, buildings designed according to outdated code may not resist the higher demand required by newer code. In this study, seismic performance of Hotel X in Kupang, Indonesia which was designed based on SNI-1726-2002 is investigated. The structure was analyzed using Nonlinear Time History Analysis. The seismic load used was a spectrum consistent ground acceleration generated from El-Centro 18 May 1940 North-South component in accordance to SNI 1726-2012. The results show that Hotel X can resist maximum considered earthquake required by SNI 1726-2012. The maximum drift ratio is 0.81% which is lower than the limit set by FEMA 356-2000 (2%). Plastic hinge damage level is also lower than the allowance in ACMC 2001.


2010 ◽  
Vol 156-157 ◽  
pp. 467-472
Author(s):  
Peng Tao Yu ◽  
Jing Jiang Sun

Under the excitation of large earthquake, structures enter into high nonlinear stage. Currently, Opensees, Perform-3d and Canny are used as the most popular nonlinear analysis procedures. The fiber model will be introduced firstly and the nonlinear analysis models in Canny are explained in detail. Then Canny2007 is used to conduct nonlinear time history analysis on a heavily damaged frame structure with interlayer in Dujiangyan during Wenchuan Earthquake. Analysis shows that the maximum inter-story drift appears between the interlayer and its upper layer, and the heavy damage agrees well with the results of damage investigation. By comparing the damage extent of frame structures with or without interlayer, it reveals that the seismic performance of RC frame structures without interlayer is obviously better than that of ones with interlayer.


2021 ◽  
pp. 875529302110478
Author(s):  
Payal Gwalani ◽  
Yogendra Singh ◽  
Humberto Varum

The existing practice to estimate seismic performance of a regular building is to carry out nonlinear time history analysis using two-dimensional models subjected to unidirectional excitations, even though the multiple components of ground motion can affect the seismic response, significantly. During seismic shaking, columns are invariably subjected to bending in two orthogonal vertical planes, which leads to a complex interaction of axial force with the biaxial bending moments. This article compares the seismic performance of regular and symmetric RC moment frame buildings for unidirectional and bidirectional ground motions. The buildings are designed and detailed according to the Indian codes, which are at par with the other modern seismic codes. A fiber-hinge model, duly calibrated with the biaxial experimental results, is utilized to simulate the inelastic behavior of columns under bidirectional bending. A comparison of the estimated seismic collapse capacity is presented, illustrating the importance of considering the bidirectional effects. The results from fragility analysis indicate that the failure probabilities of buildings under the bidirectional excitation are significantly higher as compared to those obtained under the unidirectional excitation.


2011 ◽  
Vol 90-93 ◽  
pp. 1644-1648
Author(s):  
Dong Qiang Xu ◽  
Mei Mei He

The article considers the two horizontal components of ground motion and torsional component, to do nonlinear time history analysis both on regular and irregular shaped column frame structure models. The results show that torsional component of ground motion haves some impact on torsion reaction of structures, stiffness of irregular shaped column frame structure is uneven, and angle of columns are greater than that of the regular structure; torsion haves some impact on the torque of structure, the torque increases of corner columns is maximum, so corner columns are weak links in shaped column structure, considered fully during the seismic design.


Sign in / Sign up

Export Citation Format

Share Document