Probabilistic Peak Displacement Analysis of Bridge Structures with P-Δ Effect

2013 ◽  
Vol 405-408 ◽  
pp. 1674-1677
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Peak displacement is one of the most important parameters for the performance based seismic design of bridge structure, while the peak displacement is often significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the statistics of peak displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single degree of freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the mean and dispersion of peak displacement of bridge structures, especially if the normalized yield strength and the natural vibration period are small.

2013 ◽  
Vol 405-408 ◽  
pp. 1678-1681
Author(s):  
Bo Yu ◽  
Di Liu ◽  
Lu Feng Yang

Residual displacement has been identified as one of the most important parameter to assess the reparability and usability of bridge structures after strong earthquake, which is significantly impacted by the P-Δ effect. In this study, the influence of the P-Δ effect on the probabilistic characteristics of residual displacement of bridge structure was quantificationally investigated based on a series of nonlinear time-history analysis. The bridge structure was idealized as the single-degree-of-freedom (SDOF) system and the hysteretic behaviour was represented by the improved Bouc-Wen model. The statistic analysis was implemented based on the inelastic dynamic responses of the SDOF system under 69 selected earthquake records. The results show that the P-Δ effect has significant impact on the residual displacement, especially for systems with large stability factor and/or small post-yield stiffness ratio and yield strength.


2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


Author(s):  
Paata Rekvava

A method is presented for the evaluation of the seismic reliability function of realistic structural systems. The method is based on a preliminary simulation involving three-dimensional nonlinear time history analysis of the soil-interface-building system. The design procedure is performed to establish the probabilistic characterization of the demands on the structure, followed by the solution of system reliability problem with correlated demands and capacities. The Structural behavior is evaluated by means of the methodology of Performance-Based Seismic Design (PBSD). This study has taken into account the stochastic nature of the spatial ground motion in Tbilisi region. The method is demonstrated with an application to a 3D RC Buildings subjected to seismic excitation for the specified hazard at the site. The developed method and obtained results can be used in seismic risk study for new buildings of examined type under design, as well as for existing RC buildings of old generation for future seismic activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Amir Seyedkhoei ◽  
Reza Akbari ◽  
Shahrokh Maalek

Progressive collapse is a persistent spread and enlargement of initial local failure of structures characterized by inconsistency between the initial failure and its resulting extensive collapse. Although, great contributions have been made towards the progressive collapse of building structures, comparably small attention has been paid to bridge structures. In this study, the procedure of progressive collapse of bridges with concrete prestressed voided slab under earthquakes and effects of other parameters on propagation of collapse of regular, semiregular, and irregular bridges are investigated. At first, a bridge specimen, which its shake table test results were provided by previous researchers, was modeled and verified using the applied element method. Then, the progressive collapse of the box girder bridge was investigated. In the next step, progressive collapse process of the same bridge with posttensioned voided slab under earthquakes was studied using nonlinear time history analysis. Irregularities of the piers were analyzed parametrically. The results show that domino-type progressive collapse happens in bridges with voided slab after the initial failure of the deck at the seating of bridge abutment. Also, it is concluded that, type of the deck, height of the piers, and ground slope have a great effect on the progressive collapse procedure of both regular and irregular bridges with voided slab deck.


2007 ◽  
Vol 23 (2) ◽  
pp. 87-94
Author(s):  
Y.-C. Sung ◽  
S.-Y. Chang ◽  
M.-C. Lai ◽  
T.-W. Lin ◽  
I.-C. Tsai

AbstractFor a bi-linear SDOF system subjected to a specific wave form of the ground acceleration, the unique yielding pseudo spectral acceleration and spectral displacement (Say, Sdy) together with various inelastic responses (Sai, Sdi) can be obtained via nonlinear time history analyses, respectively, by tuning the different levels of peak ground acceleration as various input ground motions. Meanwhile, the corresponding elastic responses (Sae, Sde) of a linear SDOF system with the identical mass, viscous damping and elastic stiffness as those of the bi-linear one can also be determined through linear time history analyses under the same excitations. The proposed NSAD format shown on the diagram of the elastic force ratio, Ω=Sae/Say I Say, versus the ductility ratio, (μ= (Sdi/Sdy), is a dimensionless plot of the seismic demands suitable to the engineers who are familiar with the conventional force-based design using linear structural analysis. In this paper, more than two hundred ground motions recorded in the Chi-Chi earthquake, Taiwan (1999) were chosen as the seismic inputs for the establishment of the NSAD format. The characteristics and applications of the NSAD format on the performance-based seismic design of the bridge structures were discussed, and realistic procedures for the methodology were proposed.The results obtained shows that the NSAD format can help the engineers evaluate the multiple-level seismic demands not only with a well precision but also with a great convenience.


2014 ◽  
Vol 919-921 ◽  
pp. 965-968
Author(s):  
Hong Xue Li ◽  
Yong Ming Zhao

The rapid development of modern seismic isolation technology has opened up new avenues of bridge seismic. For the bridge structure in highly seismic region,seismic isolation devices reduce the effects of the earthquake damage to bridges, but also reduce the ability of the bridge structure to resist other loads along with the increase of the displacement under seismic action. Nowadays, there are few engineering examples of the composite bridge with corrugated steel webs using seismic isolation technology. In this paper, we use Bridge Xiaoshagou as an example to study isolation technology with nonlinear time history analysis.


2018 ◽  
Vol 20 (1) ◽  
pp. 35
Author(s):  
Pamuda Pudjisuryadi ◽  
Benjamin Lumantarna ◽  
Ryan Setiawan ◽  
Christian Handoko

The recent seismic code SNI 1726-2012 is significantly different compared to the older code SNI 1726-2002. The seismic hazard map was significantly changed and the level of maximum considered earthquake was significantly increased. Therefore, buildings designed according to outdated code may not resist the higher demand required by newer code. In this study, seismic performance of Hotel X in Kupang, Indonesia which was designed based on SNI-1726-2002 is investigated. The structure was analyzed using Nonlinear Time History Analysis. The seismic load used was a spectrum consistent ground acceleration generated from El-Centro 18 May 1940 North-South component in accordance to SNI 1726-2012. The results show that Hotel X can resist maximum considered earthquake required by SNI 1726-2012. The maximum drift ratio is 0.81% which is lower than the limit set by FEMA 356-2000 (2%). Plastic hinge damage level is also lower than the allowance in ACMC 2001.


2010 ◽  
Vol 156-157 ◽  
pp. 467-472
Author(s):  
Peng Tao Yu ◽  
Jing Jiang Sun

Under the excitation of large earthquake, structures enter into high nonlinear stage. Currently, Opensees, Perform-3d and Canny are used as the most popular nonlinear analysis procedures. The fiber model will be introduced firstly and the nonlinear analysis models in Canny are explained in detail. Then Canny2007 is used to conduct nonlinear time history analysis on a heavily damaged frame structure with interlayer in Dujiangyan during Wenchuan Earthquake. Analysis shows that the maximum inter-story drift appears between the interlayer and its upper layer, and the heavy damage agrees well with the results of damage investigation. By comparing the damage extent of frame structures with or without interlayer, it reveals that the seismic performance of RC frame structures without interlayer is obviously better than that of ones with interlayer.


2021 ◽  
pp. 875529302110478
Author(s):  
Payal Gwalani ◽  
Yogendra Singh ◽  
Humberto Varum

The existing practice to estimate seismic performance of a regular building is to carry out nonlinear time history analysis using two-dimensional models subjected to unidirectional excitations, even though the multiple components of ground motion can affect the seismic response, significantly. During seismic shaking, columns are invariably subjected to bending in two orthogonal vertical planes, which leads to a complex interaction of axial force with the biaxial bending moments. This article compares the seismic performance of regular and symmetric RC moment frame buildings for unidirectional and bidirectional ground motions. The buildings are designed and detailed according to the Indian codes, which are at par with the other modern seismic codes. A fiber-hinge model, duly calibrated with the biaxial experimental results, is utilized to simulate the inelastic behavior of columns under bidirectional bending. A comparison of the estimated seismic collapse capacity is presented, illustrating the importance of considering the bidirectional effects. The results from fragility analysis indicate that the failure probabilities of buildings under the bidirectional excitation are significantly higher as compared to those obtained under the unidirectional excitation.


2011 ◽  
Vol 90-93 ◽  
pp. 1644-1648
Author(s):  
Dong Qiang Xu ◽  
Mei Mei He

The article considers the two horizontal components of ground motion and torsional component, to do nonlinear time history analysis both on regular and irregular shaped column frame structure models. The results show that torsional component of ground motion haves some impact on torsion reaction of structures, stiffness of irregular shaped column frame structure is uneven, and angle of columns are greater than that of the regular structure; torsion haves some impact on the torque of structure, the torque increases of corner columns is maximum, so corner columns are weak links in shaped column structure, considered fully during the seismic design.


Sign in / Sign up

Export Citation Format

Share Document