scholarly journals The Multi-Millennial Olive Agroecosystem of Salento (Apulia, Italy) Threatened by Xylella Fastidiosa Subsp. Pauca: A Working Possibility of Restoration

2020 ◽  
Vol 12 (17) ◽  
pp. 6700
Author(s):  
Marco Scortichini

In Salento, the olive agro-ecosystem has lasted more than 4000 years, and represents an invaluable local heritage for landscape, trade, and social traditions. The quarantine bacterium Xylella fastidiosa subsp. pauca was introduced in the area from abroad and has been widely threatening olive groves in the area. The successful eradication of quarantine phytopathogens requires a prompt identification of the causative agent at the new site, a restricted infected area, a highly effective local organization for crop uprooting and biological features of the micro-organism that would guarantee its complete elimination. However, at the time of the first record, these criteria were not met. Interdisciplinary studies showed that a zinc-copper-citric acid biocomplex allowed a consistent reduction of field symptoms and pathogen cell concentration within infected olive trees. In this perspective article, it is briefly described the implementation of control strategies in some olive farms of Salento. The protocol includes spray treatment with the biocomplex during spring and summer, regular pruning of the trees and mowing of soil between February and April to reduce the juvenile of the insect vector(s). Thus far, more than 500 ha have begun to follow this eco-friendly strategy within the “infected” and “containment” areas of Salento.

Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 85
Author(s):  
Giuseppe Tatulli ◽  
Vanessa Modesti ◽  
Nicoletta Pucci ◽  
Valeria Scala ◽  
Alessia L’Aurora ◽  
...  

During recent years; Xylella fastidiosa subsp. pauca (Xfp) has spread in Salento causing relevant damage to the olive groves. Measures to contain the spreading of the pathogen include the monitoring of the areas bordering the so-called “infected” zone and the tree eradication in case of positive detection. In order to provide a control strategy aimed to maintain the tree productivity in the infected areas, we further evaluated the in vitro and in planta mid-term effectiveness of a zinc-copper-citric acid biocomplex. The compound showed an in vitro bactericidal activity and inhibited the biofilm formation in representative strains of X. fastidiosa subspecies, including Xfp isolated in Apulia from olive trees. The field mid-term evaluation of the control strategy assessed by quantitative real-time PCR in 41 trees of two olive groves of the “infected” area revealed a low concentration of Xfp over the seasons upon the regular spraying of the biocomplex over 3 or 4 consecutive years. In particular, the bacterial concentration lowered in July and October with respect to March, after six consecutive treatments. The trend was not affected by the cultivar and it was similar either in the Xfp-sensitive cultivars Ogliarola salentina and Cellina di Nardò or in the Xfp-resistant Leccino. Moreover, the scoring of the number of wilted twigs over the seasons confirmed the trend. The efficacy of the treatment in the management of olive groves subjected to a high pathogen pressure is highlighted by the yielded a good oil production


2020 ◽  
Vol 13 (1) ◽  
pp. 14
Author(s):  
Annamaria Castrignanò ◽  
Antonella Belmonte ◽  
Ilaria Antelmi ◽  
Ruggiero Quarto ◽  
Francesco Quarto ◽  
...  

Xylella fastidiosa subsp. pauca (Xfp) is one of the most dangerous plant pathogens in the world. Identified in 2013 in olive trees in south–eastern Italy, it is spreading to the Mediterranean countries. The bacterium is transmitted by insects that feed on sap, and causes rapid wilting in olive trees. The paper explores the use of Unmanned Aerial Vehicle (UAV) in combination with a multispectral radiometer for early detection of infection. The study was carried out in three olive groves in the Apulia region (Italy) and involved four drone flights from 2017 to 2019. To classify Xfp severity level in olive trees at an early stage, a combined method of geostatistics and discriminant analysis was implemented. The results of cross-validation for the non-parametric classification method were of overall accuracy = 0.69, mean error rate = 0.31, and for the early detection class of accuracy 0.77 and misclassification probability 0.23. The results are promising and encourage the application of UAV technology for the early detection of Xfp infection.


2021 ◽  
Vol 83 (4) ◽  
Author(s):  
Sebastian Aniţa ◽  
Vincenzo Capasso ◽  
Simone Scacchi

AbstractIn a recent paper by one of the authors and collaborators, motivated by the Olive Quick Decline Syndrome (OQDS) outbreak, which has been ongoing in Southern Italy since 2013, a simple epidemiological model describing this epidemic was presented. Beside the bacterium Xylella fastidiosa, the main players considered in the model are its insect vectors, Philaenus spumarius, and the host plants (olive trees and weeds) of the insects and of the bacterium. The model was based on a system of ordinary differential equations, the analysis of which provided interesting results about possible equilibria of the epidemic system and guidelines for its numerical simulations. Although the model presented there was mathematically rather simplified, its analysis has highlighted threshold parameters that could be the target of control strategies within an integrated pest management framework, not requiring the removal of the productive resource represented by the olive trees. Indeed, numerical simulations support the outcomes of the mathematical analysis, according to which the removal of a suitable amount of weed biomass (reservoir of Xylella fastidiosa) from olive orchards and surrounding areas resulted in the most efficient strategy to control the spread of the OQDS. In addition, as expected, the adoption of more resistant olive tree cultivars has been shown to be a good strategy, though less cost-effective, in controlling the pathogen. In this paper for a more realistic description and a clearer interpretation of the proposed control measures, a spatial structure of the epidemic system has been included, but, in order to keep mathematical technicalities to a minimum, only two players have been described in a dynamical way, trees and insects, while the weed biomass is taken to be a given quantity. The control measures have been introduced only on a subregion of the whole habitat, in order to contain costs of intervention. We show that such a practice can lead to the eradication of an epidemic outbreak. Numerical simulations confirm both the results of the previous paper and the theoretical results of the model with a spatial structure, though subject to regional control only.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1035
Author(s):  
Ugo Picciotti ◽  
Nada Lahbib ◽  
Valdete Sefa ◽  
Francesco Porcelli ◽  
Francesca Garganese

The Philaenus spumarius L. (Hemiptera Aphrophoridae) is a xylem-sap feeder vector that acquires Xylella fastidiosa subsp. pauca ST53 during feeding on infected plants. The bacterium is the plant pathogen responsible for olive quick decline syndrome that has decimated olive trees in Southern Italy. Damage originates mainly from the insect vector attitude that multiplies the pathogen potentialities propagating Xf in time and space. The principal action to manage insect-borne pathogens and to contain the disease spread consists in vector and transmission control. The analysis of an innovative and sustainable integrated pest management quantitative strategy that targets the vector and the infection by combining chemical and physical control means demonstrates that it is possible to stop the Xylella invasion. This review updates the available topics addressing vectors’ identification, bionomics, infection management, and induced disease by Xylella invasion to discuss major available tools to mitigate the damage consequent to the disease.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 130 ◽  
Author(s):  
Nicola Bodino ◽  
Vincenzo Cavalieri ◽  
Crescenza Dongiovanni ◽  
Matteo Alessandro Saladini ◽  
Anna Simonetto ◽  
...  

Spittlebugs are the vectors of the bacterium Xylella fastidiosa Wells in Europe, the causal agent of olive dieback epidemic in Apulia, Italy. Selection and distribution of different spittlebug species on host-plants were investigated during field surveys in 2016–2018 in four olive orchards of Apulia and Liguria Regions of Italy. The nymphal population in the herbaceous cover was estimated using quadrat samplings. Adults were collected by sweeping net on three different vegetational components: herbaceous cover, olive canopy, and wild woody plants. Three species of spittlebugs were collected: Philaenus spumarius L., Neophilaenus campestris (Fallén), and Aphrophora alni (L.) (Hemiptera: Aphrophoridae). Philaenus spumarius was the predominant species both in Apulia and Liguria olive groves. Nymphal stages are highly polyphagous, selecting preferentially Asteraceae Fabaceae plant families, in particular some genera, e.g., Picris, Crepis, Sonchus, Bellis, Cichorium, and Medicago. Host-plant preference of nymphs varies according to the Region and through time and nymphal instar. In the monitored sites, adults peak on olive trees earlier in Apulia (i.e., during inflorescence emergence) than in Liguria (i.e., during flowering and beginning of fruit development). Principal alternative woody hosts are Quercus spp. and Pistacia spp. Knowledge concerning plant selection and ecological traits of spittlebugs in different Mediterranean olive production areas is needed to design effective and precise control strategies against X. fastidiosa vectors in olive groves, such as ground cover modifications to reduce populations of spittlebug vectors.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 668
Author(s):  
Marco Scortichini ◽  
Stefania Loreti ◽  
Nicoletta Pucci ◽  
Valeria Scala ◽  
Giuseppe Tatulli ◽  
...  

Xylella fastidiosa subsp. pauca is the causal agent of “olive quick decline syndrome” in Salento (Apulia, Italy). On April 2015, we started interdisciplinary studies to provide a sustainable control strategy for this pathogen that threatens the multi-millennial olive agroecosystem of Salento. Confocal laser scanning microscopy and fluorescence quantification showed that a zinc-copper-citric acid biocomplex—Dentamet®—reached the olive xylem tissue either after the spraying of the canopy or injection into the trunk, demonstrating its effective systemicity. The biocomplex showed in vitro bactericidal activity towards all X. fastidiosa subspecies. A mid-term evaluation of the control strategy performed in some olive groves of Salento indicated that this biocomplex significantly reduced both the symptoms and X. f. subsp. pauca cell concentration within the leaves of the local cultivars Ogliarola salentina and Cellina di Nardò. The treated trees started again to yield. A 1H-NMR metabolomic approach revealed, upon the treatments, a consistent increase in malic acid and γ-aminobutyrate for Ogliarola salentina and Cellina di Nardò trees, respectively. A novel endotherapy technique allowed injection of Dentamet® at low pressure directly into the vascular system of the tree and is currently under study for the promotion of resprouting in severely attacked trees. There are currently more than 700 ha of olive groves in Salento where this strategy is being applied to control X. f. subsp. pauca. These results collectively demonstrate an efficient, simple, low-cost, and environmentally sustainable strategy to control this pathogen in Salento.


2021 ◽  
Vol 13 (16) ◽  
pp. 8778
Author(s):  
Teodoro Semeraro ◽  
Elisa Gatto ◽  
Riccardo Buccolieri ◽  
Valentina Catanzaro ◽  
Luigi De Bellis ◽  
...  

The Apulian Region (Italy) is a socio-ecological system shaped by the millennial co-evolution between human actions and ecological processes. It is characterized by monumental olive groves protected from Regional Law 14/2007 for the cultural value of the landscape, currently threatened by the spread of a devastating phytopathogen, the bacteria Xylella fastidiosa. The aim of this paper is to apply landscape resilience analysis focusing on ecosystem services to understand the potential effects and trade-offs of regeneration policies in a peri-urban area characterized by monumental olive groves land cover. The study involved land-cover and land-use analysis, supported by a survey on the inhabitants and an ecosystem services analysis. The results showed a mismatch between the agroecosystem and the social and economic use linked to leisure or hospitality. The study area was defined as a peri-urban landscape characterized by tourist use. From the interviews of the users, the cultural heritage of olive groves seems linked to the presence of olive trees like a status quo of the landscape and olive oil productions. The culture aspect could thus be preserved by changing the type of olive trees. In addition, the analysis showed that the microclimate could be preserved and enhanced in terms of air temperature and thermal comfort, by replacing the olive trees with varieties resistant to Xylella, such as cv. Leccino. Therefore, regeneration policies that promote replacing dead olive groves with new olive trees could be efficient to stimulate social components of the landscape and improve the resilience of ecosystem services in peri-urban areas in the interest of the cultural heritage of the users and benefits that they provide. An ecosystem services analysis at a local scale could be a strategy for an integrated regenerate approach between land-use and land-cover with social, ecological, and economic evolutions vision orientated to a sustainable and desirable future.


2019 ◽  
Vol 11 (3) ◽  
pp. 221 ◽  
Author(s):  
Beatriz Rey ◽  
Nuria Aleixos ◽  
Sergio Cubero ◽  
José Blasco

The use of remote sensing to map the distribution of plant diseases has evolved considerably over the last three decades and can be performed at different scales, depending on the area to be monitored, as well as the spatial and spectral resolution required. This work describes the development of a small low-cost field robot (Remotely Operated Vehicle for Infection Monitoring in orchards, XF-ROVIM), which is intended to be a flexible solution for early detection of Xylella fastidiosa (X. fastidiosa) in olive groves at plant to leaf level. The robot is remotely driven and fitted with different sensing equipment to capture thermal, spectral and structural information about the plants. Taking into account the height of the olive trees inspected, the design includes a platform that can raise the cameras to adapt the height of the sensors to a maximum of 200 cm. The robot was tested in an olive grove (4 ha) potentially infected by X. fastidiosa in the region of Apulia, southern Italy. The tests were focused on investigating the reliability of the mechanical and electronic solutions developed as well as the capability of the sensors to obtain accurate data. The four sides of all trees in the crop were inspected by travelling along the rows in both directions, showing that it could be easily adaptable to other crops. XF-ROVIM was capable of inspecting the whole field continuously, capturing geolocated spectral information and the structure of the trees for later comparison with the in situ observations.


Insects ◽  
2018 ◽  
Vol 9 (4) ◽  
pp. 175 ◽  
Author(s):  
Marina Morente ◽  
Daniele Cornara ◽  
María Plaza ◽  
José Durán ◽  
Carmen Capiscol ◽  
...  

The phytosanitary emergency caused by the spread of Xylella fastidiosa in the Mediterranean has raised demands for a better understanding of the ecology of its presumed and candidate insect vectors. Here, we present the results of a two-year survey carried out in olive groves across southern, eastern and Central Spain and northeastern Portugal. Several sampling methods were tested and compared to select the most appropriate to estimate population levels of potential vectors of X. fastidiosa. The spittlebugs Philaenus spumarius and Neophilaenus campestris (Hemiptera: Aphrophoridae) were the main species associated with olive groves. Both species were widely present on herbaceous ground vegetation within the olive groves; P. spumarius mainly associated with Asteraceae and N. campestris with Poaceae. Due to the patchy distribution of spittlebugs within the olive groves, sweep nets were the most effective and least time-consuming sampling method for the estimation of population size both in the ground cover and tree canopies. Trends in population density showed that spittlebugs can be abundant on ground vegetation but very rare on olive canopies. Spittlebugs disperse in late spring to non-cultivated hosts that act as natural reservoirs. In late fall, adults return to the olive groves for oviposition. However, olive trees may act as transient hosts for spittlebugs and high population densities of these insect vectors should be avoided in areas where X. fastidiosa is present.


Insects ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 300 ◽  
Author(s):  
Angela Kruse ◽  
Laura A. Fleites ◽  
Michelle Heck

Huanglongbing is causing economic devastation to the citrus industry in Florida, and threatens the industry everywhere the bacterial pathogens in the Candidatus Liberibacter genus and their insect vectors are found. Bacteria in the genus cannot be cultured and no durable strategy is available for growers to control plant infection or pathogen transmission. However, scientists and grape growers were once in a comparable situation after the emergence of Pierce’s disease, which is caused by Xylella fastidiosa and spread by its hemipteran insect vector. Proactive quarantine and vector control measures coupled with interdisciplinary data-driven science established control of this devastating disease and pushed the frontiers of knowledge in the plant pathology and vector biology fields. Our review highlights the successful strategies used to understand and control X. fastidiosa and their potential applicability to the liberibacters associated with citrus greening, with a focus on the interactions between bacterial pathogen and insect vector. By placing the study of Candidatus Liberibacter spp. within the current and historical context of another fastidious emergent plant pathogen, future basic and applied research to develop control strategies can be prioritized.


Sign in / Sign up

Export Citation Format

Share Document