scholarly journals BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost

2020 ◽  
Vol 12 (19) ◽  
pp. 7862
Author(s):  
Zhenmin Yuan ◽  
Jianliang Zhou ◽  
Yaning Qiao ◽  
Yadi Zhang ◽  
Dandan Liu ◽  
...  

In the context of the increasingly severe energy crisis and global warming, green buildings and their energy-saving issues are being paid more attention in the world. Since envelope optimization can significantly reduce the energy consumption of green buildings, value engineering (VE) technology and building information modeling (BIM) technology are used to optimize the envelope of green buildings, which takes into account both energy saving and life cycle cost. The theoretical framework of optimization for green building envelope based on BIM-VE is proposed, including a BIM model for architecture, a life cycle cost analysis model, energy-saving analysis model, and a value analysis model. In the life-cycle cost model, a mathematical formula for the life-cycle cost is established, and BIM technology is used to generate a bill of quantity. In the energy-saving analysis model, a mathematical formula for energy saving is established, and BIM technology is used for the building energy simulation. In the scheme decision-making sub-model, VE technology integrating life cycle cost with energy saving is used to assess the envelope schemes and select the optimal one. A prefabricated project case is used to simulate and test the established methodology. The important results show that the 16 envelope schemes make the 16 corresponding designed buildings meet the green building evaluation standards, and the optimal envelope scheme is the “energy-saving and anti-theft door + exterior window 2+ floor 1+ exterior wall 1 + inner shear wall + inner partition wall 2 + planted roof” with the value 10.80 × 10−2 MW·h/ten thousand yuan. A significant finding is that the value generally rises with the increase of energy-saving rate while the life cycle cost is irregular with the increase of energy-saving rate. Compared with previous efforts in the literature, this study introduces VE technology into architectural design to further expand the current boundary of building energy-saving theory. The findings and suggestions will provide a valuable reference and guidance for the architectural design industry to optimize the envelope of green buildings from the perspective of both energy saving and life cycle cost.

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Weinan Gan ◽  
Yunzhong Cao ◽  
Wen Jiang ◽  
Liangqiang Li ◽  
Xiaolin Li

The contradiction between the indoor environment and building energy consumption has been controversial. The design of building envelope involves many parameters such as window size and exterior wall material. These parameters have significant influence on building energy-saving design and indoor environment. In this paper, nondominant sorting genetic algorithm-II (NSGA-II) is utilized to calculate winter heat consumption, indoor total lighting energy consumption, and thermal comfort. The Pareto method is used to select the compromise solution and effective value of each building parameter. Different from other studies, we add more architectural design variables into the model calculation, which can bring architects more detailed energy-saving design content.


2018 ◽  
Vol 10 (10) ◽  
pp. 3777 ◽  
Author(s):  
Shilei Lu ◽  
Minchao Fan ◽  
Yiqun Zhao

Rating systems for green buildings often give assessments from the perspective of the overall performance of a single building or architecture complex but rarely target specific green building technologies. As some of the rating systems are scored according to whether the technologies are used or not, some developers tend to pile up energy-saving technologies blindly just for the sake of certifications without considering their suitability for the application. Such behavior may lead to the failure of achieving the energy goals for green buildings. To solve this problem, a system that pre-evaluates the suitability of green building energy-saving technologies is devised based on modified TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method, SA (simulated annealing) algorithm and unascertained theory-based data analysis method. By setting indices from technology performance, economy, human satisfaction aspects and by using the building prior information and measured database of technology usage, this system can make a quantifiable and multi-dimensional grading assessment for the target green building energy-saving technologies in the design stage. The system aims at helping the designer choose technologies in the design phase that best enhance the performance of the finished green building. It also helps prevent the sub-optimal performance of unsuitable technologies caused by the “pile up” behavior mentioned earlier. To verify this evaluation system, two building designs which use energy-recovery technology are evaluated, and the predicted performance for both designs matched the actual operation of the technology in the buildings themselves well.


2012 ◽  
Vol 598 ◽  
pp. 57-61 ◽  
Author(s):  
Yun Xuan Li ◽  
Da Lu Tan ◽  
Chen Ya Liao

With the growing importance of energy saving and environmental protection, building energy efficiency has become an important element of global energy conservation and green building has played a leading role in this regard. However, to achieve real building energy-saving, we should begin with green building design. LEED evaluation system is the most widely used and leading a new generation of architectural design trends. LEED standards used in green building design content the basic requirements of the tenants. At the same time, they protect the ecological environment and conserve natural resources largely.


2018 ◽  
Vol 1 (1) ◽  
pp. 772-781
Author(s):  
Ahmad Altarabsheh ◽  
Ibrahim Altarabsheh ◽  
Sara Altarabsheh ◽  
Nisreen Rababaa ◽  
Ayat Smadi ◽  
...  

Green buildings have been gaining in popularity over the past few years in Jordan. This is attributed to environmental and financial reasons directly related to energy consumption and cost. Energy sector in Jordan faces two main challenges which are the fast growing of energy demand and the scarcity of resources to fulfill this demand. Green buildings can save energy by designing them as near Zero Energy Buildings, where they produce amount of energy almost equal the amount of energy they consume. In special cases green buildings can be designed as Net zero energy buildings, where they produce as much energy as they consume. Jordan government encourage people to adopt net zero green buildings by issuing the Renewable Energy and Energy Efficiency Law No. 13 of 2012, that allows selling excessive electricity to electricity companies. Despite these benefits of green buildings, they are not yet the norm in the building sector in Jordan. This can be attributed to the high construction cost of green building compared to traditional one. However, this may not be true if the whole life cycle cost of the building is considered, in which the cost not only include design and construction but also operation and maintenance as well. This paper aims to provide real life cycle cost analysis for a typical residential building in Jordan, and to search different effective building strategies and design scenarios that will lead to a successful near Zero Energy Building. The search will apply main green building strategies recommended for Jordan climatic zone. The outcome of this study is a list of best economically feasible design solutions and system selections that result in near Zero Energy Building in Jordan for residential buildings.


2018 ◽  
Vol 10 (10) ◽  
pp. 3558 ◽  
Author(s):  
Jisoo Shim ◽  
Doosam Song ◽  
Joowook Kim

The number of passive houses and zero-energy buildings being developed is increasing, as measures to reduce the rapidly increasing building energy consumption. While government building policies focus on energy savings, investors and the building market emphasize the initial investment cost. These conflicting perspectives obstruct the development of passive houses in the building market. In this study, a series of building energy analyses, including the effect of energy saving measures and economic information considering long-term economic benefit and incentives policy, will be presented. Analyses were performed on the energy-saving measures needed to improve the performance of single-family houses in Korea to that of the passive house standard, as well as the energy saving effect and increased cost. The application of energy saving measures for passive house implementation resulted in an additional cost of 1.85%–4.20% compared to the conventional reference house. In addition, the proposed passive house alternative shows a short payback period and life cycle cost (LCC) result, compared to a conventional building’s life cycle period. The possibility of passive house implementation is high, and developing the passive house is affordable for the investor or end user in Korea.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 226
Author(s):  
Xuyang Zhao ◽  
Cisheng Wu ◽  
Duanyong Liu

Within the context of the large-scale application of industrial robots, methods of analyzing the life-cycle cost (LCC) of industrial robot production have shown considerable developments, but there remains a lack of methods that allow for the examination of robot substitution. Taking inspiration from the symmetry philosophy in manufacturing systems engineering, this article further establishes a comparative LCC analysis model to compare the LCC of the industrial robot production with traditional production at the same time. This model introduces intangible costs (covering idle loss, efficiency loss and defect loss) to supplement the actual costs and comprehensively uses various methods for cost allocation and variable estimation to conduct total cost and the cost efficiency analysis, together with hierarchical decomposition and dynamic comparison. To demonstrate the model, an investigation of a Chinese automobile manufacturer is provided to compare the LCC of welding robot production with that of manual welding production; methods of case analysis and simulation are combined, and a thorough comparison is done with related existing works to show the validity of this framework. In accordance with this study, a simple template is developed to support the decision-making analysis of the application and cost management of industrial robots. In addition, the case analysis and simulations can provide references for enterprises in emerging markets in relation to robot substitution.


2021 ◽  
Vol 11 (4) ◽  
pp. 1423
Author(s):  
José Manuel Salmerón Lissen ◽  
Cristina Isabel Jareño Escudero ◽  
Francisco José Sánchez de la Flor ◽  
Miriam Navarro Escudero ◽  
Theoni Karlessi ◽  
...  

The 2030 climate and energy framework includes EU-wide targets and policy objectives for the period 2021–2030 of (1) at least 55% cuts in greenhouse gas emissions (from 1990 levels); (2) at least 32% share for renewable energy; and (3) at least 32.5% improvement in energy efficiency. In this context, the methodology of the cost-optimal level from the life-cycle cost approach has been applied to calculate the cost of renovating the existing building stock in Europe. The aim of this research is to analyze a pilot building using the cost-optimal methodology to determine the renovation measures that lead to the lowest life-cycle cost during the estimated economic life of the building. The case under study is an apartment building located in a mild Mediterranean climate (Castellon, SP). A package of 12 optimal solutions has been obtained to show the importance of the choice of the elements and systems for renovating building envelopes and how energy and economic aspects influence this choice. Simulations have shown that these packages of optimal solutions (different configurations for the building envelope, thermal bridges, airtightness and ventilation, and domestic hot water production systems) can provide savings in the primary energy consumption of up to 60%.


2014 ◽  
Vol 986-987 ◽  
pp. 1026-1028
Author(s):  
Hai Qing Guo

Energy-saving hierarchical design model is established for differentiate architecture. From current status of China's construction, exploration research is established on energy-saving hierarchical design model of differentiate architecture to evaluate indicator system of energy-saving building. Availability of evaluation information in index system is low, so it is difficult to play the role of evaluation of building energy-efficiency. EHTV difference method is used to calculate and evaluate energy-saving design of hierarchical building, including: heat transfer indicator of building envelope targets, air conditioning and heating consumption, basis of EHTV indicators.


2021 ◽  
Vol 1 (1) ◽  
pp. 7-14
Author(s):  
Qudama M. Q. Al-Yasiri ◽  
Márta Szabó

Phase change materials (PCMs) are increasingly investigated in the last years as successful in many thermal energy storage applications. In the building sector, PCMs are utilised to improve building efficiency by reducing cooling/heating loads and promoting renewable energy sources, such as solar energy. This paper shows the recent research works on integrating PCMs with building envelope for heating purposes. The main PCM categories and their main characteristics are presented, focusing on PCM types applied for building heating applications. The main methods adopted to incorporate PCMs with building elements and materials are mentioned, and the popular passive and active incorporation techniques are discussed. Lastly, the main contribution to building energy saving is discussed in terms of heating applications. The analysed studies indicated that all PCMs could improve the building energy saving in the cold climates by up to 44.16% regardless of their types and techniques. Several conclusions and recommendations are derived from the analysed studies that are believed to be a guideline for further research.


Sign in / Sign up

Export Citation Format

Share Document