Green Building Design Based on LEED Standarts

2012 ◽  
Vol 598 ◽  
pp. 57-61 ◽  
Author(s):  
Yun Xuan Li ◽  
Da Lu Tan ◽  
Chen Ya Liao

With the growing importance of energy saving and environmental protection, building energy efficiency has become an important element of global energy conservation and green building has played a leading role in this regard. However, to achieve real building energy-saving, we should begin with green building design. LEED evaluation system is the most widely used and leading a new generation of architectural design trends. LEED standards used in green building design content the basic requirements of the tenants. At the same time, they protect the ecological environment and conserve natural resources largely.

2014 ◽  
Vol 525 ◽  
pp. 439-442
Author(s):  
Ling Jiao

With the development of economy, the progress of the times, the city continued to expand the scale of construction, building energy consumption is more and more serious, and the green energy-saving buildings are paid more and more attention in society. Building energy efficiency can fundamentally promote the savings and the rational use of energy and resources, Building energy efficiency is the needs to guarantee the sustainable development of national economy. With problems in building energy efficiency as the point of penetration, this paper analyses the present situations of building energy consumption and the major energy-saving issues in China. On the basis, in order to promote the green building of sustainable development, from thinking, evaluation system, design and other aspects some suggestions and measures are proposed .


2013 ◽  
Vol 724-725 ◽  
pp. 1608-1613
Author(s):  
Li Wang

Resource shortage and people’s concern about the problems in eco-environment deterioration will have a great influence on building energy efficiency. Building energy efficiency is base for achieving green reduction and energy conservation is the key point to green building design. This paper starts with green building concept and evaluation, studies the important role of science and technology in the development of green building and analyzes building energy conservation from three aspects: green materials, energy-saving measures and building practices. The paper aims to promote the development of China's green building in the new era.


2019 ◽  
Vol 118 ◽  
pp. 03040
Author(s):  
Shengnan Niu ◽  
Yang Li

The purpose of this research is to investigate the use of double skin in Thomas Herzog’s works. Double skin is an important method of green building design, and it is also one of the building energy-saving techniques that Thomas Herzog often uses. This paper discusses some of the common features of Herzog’s application of double skin by summarizing some of Herzog’s works and comparing them with the actual construction of Chinese ecological buildings.


2011 ◽  
Vol 71-78 ◽  
pp. 655-658
Author(s):  
Rong Qin

There are six basic control items, land saving, energy saving, water saving, material saving, indoor environment and operation, among which, only material saving are related to structure design. We followed the green building design concept and the control items list in those standards during structure design of one of the residential area in Sino-Singapore Tianjin Eco-city, which consist of 15~18-story residential building connected to a large underground garage, as is shown below.


2013 ◽  
Vol 830 ◽  
pp. 416-421
Author(s):  
Mei Xiong

The constraints of resources and environment in China are more and more intense. The 12th Five-Year Plan requires that energy saving must be considered in the architectural design. Liangshan has special climate and sunshine. Therefore, the Government of Liangshan requires that building energy saving must be started from the stage of architectural design. Building energy efficiency must be considered from several aspects, such as architectural layout, wall structure, windows and doors, roof structure, external sun-shading, and construction materials.


2020 ◽  
Vol 12 (19) ◽  
pp. 7862
Author(s):  
Zhenmin Yuan ◽  
Jianliang Zhou ◽  
Yaning Qiao ◽  
Yadi Zhang ◽  
Dandan Liu ◽  
...  

In the context of the increasingly severe energy crisis and global warming, green buildings and their energy-saving issues are being paid more attention in the world. Since envelope optimization can significantly reduce the energy consumption of green buildings, value engineering (VE) technology and building information modeling (BIM) technology are used to optimize the envelope of green buildings, which takes into account both energy saving and life cycle cost. The theoretical framework of optimization for green building envelope based on BIM-VE is proposed, including a BIM model for architecture, a life cycle cost analysis model, energy-saving analysis model, and a value analysis model. In the life-cycle cost model, a mathematical formula for the life-cycle cost is established, and BIM technology is used to generate a bill of quantity. In the energy-saving analysis model, a mathematical formula for energy saving is established, and BIM technology is used for the building energy simulation. In the scheme decision-making sub-model, VE technology integrating life cycle cost with energy saving is used to assess the envelope schemes and select the optimal one. A prefabricated project case is used to simulate and test the established methodology. The important results show that the 16 envelope schemes make the 16 corresponding designed buildings meet the green building evaluation standards, and the optimal envelope scheme is the “energy-saving and anti-theft door + exterior window 2+ floor 1+ exterior wall 1 + inner shear wall + inner partition wall 2 + planted roof” with the value 10.80 × 10−2 MW·h/ten thousand yuan. A significant finding is that the value generally rises with the increase of energy-saving rate while the life cycle cost is irregular with the increase of energy-saving rate. Compared with previous efforts in the literature, this study introduces VE technology into architectural design to further expand the current boundary of building energy-saving theory. The findings and suggestions will provide a valuable reference and guidance for the architectural design industry to optimize the envelope of green buildings from the perspective of both energy saving and life cycle cost.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yang Wang ◽  
Misheng Lin ◽  
Ke Xu ◽  
Shuyang Zhang ◽  
Hongwei Ma

Purpose Electrochromic window (ECW) has been gradually applied to building engineering in recent years. However, empirical study of this technology used in green building design is still lacking. This study aims to verify the lighting and energy-saving performance of ECW under a specific geographical environment. Design/methodology/approach The meditation pavilion of Jinwan new materials research institute in Zhuhai is taken for research object. Three kinds of sun-shading techniques, namely, ECW, Low-E window and ordinary glass window, with same specifications are selected as the building facade structure for simulation. Day lighting analysis, sun-shading performance and annual energy consumption are separately simulated in the same environment by the Autodesk Ecotect Analysis software. The energy-saving performance of ECW is obtained by comparisons. Findings Result shows that the shading performance of ECW is much better than ordinary window and Low-E window. When ECW is used in the east, west or top lighting interfaces of a building, about 40% of the total solar radiation can be reduced during daytime in summer. Taking the ordinary glass window as a basic reference, ECW can save about 90% of the annual energy consumption of the glass house. ECW can effectively reduce the annual refrigeration energy consumption of buildings in the subtropical region. Practical implications Reasonable use of ECW in the subtropical region can effectively reduce the annual energy consumption of buildings. Originality/value It is a precedent study to analyze the lighting performance and energy consumption of a glass house with ECW. The energy-saving characteristics and beautiful appearance of ECW shall make it a future green building technology.


2013 ◽  
Vol 438-439 ◽  
pp. 1746-1750
Author(s):  
Yan Li

As the major public buildings and cultural service institutions, libraries play an important role in the strategy of energy-saving buildings. In order to keep pace with the footstep of Western developed countries, China has launched a series of green and energy-saving building practices and achieved certain results. The New Hubei Library is a successful example, with Chinese national conditions and the characteristic of the library itself taken into consideration, and limited conditions in the design process fully made the most use of. Besides the designer has efficiently used energy-saving strategy on building structure maintenance, solar radiation, air conditioning control system and natural ventilation, finally achieved the goal of energy saving of library.


2018 ◽  
Vol 10 (10) ◽  
pp. 3777 ◽  
Author(s):  
Shilei Lu ◽  
Minchao Fan ◽  
Yiqun Zhao

Rating systems for green buildings often give assessments from the perspective of the overall performance of a single building or architecture complex but rarely target specific green building technologies. As some of the rating systems are scored according to whether the technologies are used or not, some developers tend to pile up energy-saving technologies blindly just for the sake of certifications without considering their suitability for the application. Such behavior may lead to the failure of achieving the energy goals for green buildings. To solve this problem, a system that pre-evaluates the suitability of green building energy-saving technologies is devised based on modified TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) method, SA (simulated annealing) algorithm and unascertained theory-based data analysis method. By setting indices from technology performance, economy, human satisfaction aspects and by using the building prior information and measured database of technology usage, this system can make a quantifiable and multi-dimensional grading assessment for the target green building energy-saving technologies in the design stage. The system aims at helping the designer choose technologies in the design phase that best enhance the performance of the finished green building. It also helps prevent the sub-optimal performance of unsuitable technologies caused by the “pile up” behavior mentioned earlier. To verify this evaluation system, two building designs which use energy-recovery technology are evaluated, and the predicted performance for both designs matched the actual operation of the technology in the buildings themselves well.


Sign in / Sign up

Export Citation Format

Share Document